Content deleted Content added
No edit summary |
→Moduli of smoothness: →cite book |
||
(12 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Multiple issues|
{{one source|date=March 2015}}
{{technical|date=March 2015}}
}}
In [[mathematics]], '''moduli of smoothness''' are used to quantitatively measure smoothness of functions. Moduli of smoothness generalise [[modulus of continuity]] and are used in [[approximation theory]] and [[numerical analysis]] to estimate errors of approximation by [[polynomial]]s and [[spline]]s.▼
▲In [[mathematics]], '''moduli of smoothness''' are used to quantitatively measure smoothness of functions. Moduli of smoothness generalise [[modulus of continuity]] and are used in [[approximation theory]] and [[numerical analysis]] to estimate errors of approximation by [[polynomial]]s and [[spline (mathematics)|spline]]s.
==Moduli of smoothness==
The modulus of smoothness of order <math>n</math> <ref>{{cite book |last=DeVore |first=Ronald A. |last2=Lorentz |first2=George G. |title=Constructive approximation |publisher=Springer |series=Grundlehren der mathematischen Wissenschaften |volume=303 |date=1993 |isbn=978-3-642-08075-3 |url=https://link.springer.com/book/9783540506270 |oclc=231539342}}</ref>
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\
▲of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]} \left |\Delta_h^n(f,x) \right |
and
:<math>\omega_n(t,f,[a,b])=\omega_n\left(\frac{b-a}{n},f,[a,b]\right)
where
:<math>\Delta_h^n(f,x_0)=\sum_{i=
==Properties==
1. <math>\omega_n(0)=0,
2. <math>\omega_n</math> is non-decreasing on <math>[0,\infty).</math>
Line 27 ⟶ 29:
3. <math>\omega_n</math> is continuous on <math>[0,\infty).</math>
4.
::<math>\omega_n(mt)\leq m^n\omega_n(t).</math>
5. <math>\omega_n(f,\lambda t)\leq (\lambda +1)^n\omega_n(f,
6. For <math>r\in \N</math>
::<math>\left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}<+\infty.</math> :If <math>f\in W^r,</math> ::<math>\omega_r(t,f,[-1,1])\leq t^r \left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}, t\geq 0,</math> :where <math>\|g(x)\|_{L_{\infty}[-1,1]}={\mathrm{ess} \sup}_{x\in [-1,1]}|g(x)|.</math> ==Applications==
Line 41 ⟶ 48:
For every natural number <math>n</math>, if <math>f</math> is <math>2\pi</math>-periodic continuous function, there exists a [[trigonometric polynomial]] <math>T_n</math> of degree <math>\le n</math> such that
:<math>\left |f(x)-T_n(x \right )|\leq c(k)\omega_k\left(\frac{1}{n},f\right),\quad x\in[0,2\pi],</math>
where the constant <math>c(k)</math> depends on <math>k\in\
==References==
Line 49 ⟶ 56:
[[Category:Approximation theory]]
[[Category:Numerical analysis]]
|