Content deleted Content added
Importing Wikidata short description: "Grouping texts by similarity" |
|||
(20 intermediate revisions by 14 users not shown) | |||
Line 1:
{{Short description|Grouping texts by similarity}}
{{Multiple issues|
{{disputed|date=March 2014}}
{{more footnotes needed|date=March 2014}}
}}
Line 9 ⟶ 10:
Document clustering involves the use of descriptors and descriptor extraction. Descriptors are sets of words that describe the contents within the cluster. Document clustering is generally considered to be a centralized process. Examples of document clustering include web document clustering for search users.
The application of document clustering can be categorized to two types, online and offline. Online applications are usually constrained by efficiency problems when compared to offline applications. Text clustering may be used for different tasks, such as grouping similar documents (news, tweets, etc.) and the analysis of customer/employee feedback, discovering meaningful implicit subjects across all documents.
In general, there are two common algorithms. The first one is the hierarchical based algorithm, which includes single link, complete linkage, group average and Ward's method. By aggregating or dividing, documents can be clustered into hierarchical structure, which is suitable for browsing. However, such an algorithm usually suffers from efficiency problems. The other algorithm is developed using the [[K-means algorithm]] and its variants. Generally hierarchical algorithms produce more in-depth information for detailed analyses, while algorithms based around variants of the [[K-means algorithm]] are more efficient and provide sufficient information for most purposes.<ref name="manning">Manning, Chris, and Hinrich Schütze, ''
These algorithms can further be classified as hard or soft clustering algorithms. Hard clustering computes a hard assignment – each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft – a
Other algorithms involve graph based clustering, [[ontology (information science)|ontology]] supported clustering and order sensitive clustering.
Given a clustering, it can be beneficial to automatically derive human-readable labels for the clusters. [[Cluster labeling|Various methods]] exist for this purpose.
==Clustering in search engines==
A [[web search engine]] often returns thousands of pages in response to a broad query, making it difficult for users to browse or to identify relevant information. Clustering methods can be used to automatically group the retrieved documents into a list of meaningful categories
==Procedures==
Line 37 ⟶ 32:
2. [[Stemming]] and [[lemmatization]]
Different tokens might carry out similar information (e.g.
3. Removing [[stop words]] and [[punctuation]]
Line 56 ⟶ 51:
== Clustering v. Classifying ==
Clustering algorithms in computational text analysis groups documents into grouping a set of text what are called subsets or ''clusters'' where the algorithm's goal is to create internally coherent clusters that are distinct from one another.<ref>{{Cite web|url=http://nlp.stanford.edu/IR-book/|title=Introduction to Information Retrieval|website=nlp.stanford.edu|pages=349|access-date=2016-05-03}}</ref> Classification on the other hand, is a form of [[supervised learning]] where the features of the documents are used to predict the "type" of documents.
==See also==▼
*[[Cluster (disambiguation)|Cluster]]
*[[Fuzzy clustering]]▼
== References ==
{{reflist}}
== Bibliography ==
* Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. ''Flat Clustering'' in <u>Introduction to Information Retrieval.</u> Cambridge University Press. 2008
* Nicholas O. Andrews and Edward A. Fox, Recent Developments in Document Clustering, October 16, 2007 [http://eprints.cs.vt.edu/archive/00001000/01/docclust.pdf]
* Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, Dawid Weiss. A survey of Web clustering engines. ACM Computing Surveys, Volume 41, Issue 3 (July 2009), Article No. 17, {{ISSN|0360-0300}}
*Wui Lee Chang, Kai Meng Tay, and Chee Peng Lim, A New Evolving Tree-Based Model with Local Re-learning for Document Clustering and Visualization, Neural Processing Letters, DOI: 10.1007/s11063-017-9597-3. https://link.springer.com/article/10.1007/s11063-017-9597-3
{{Natural language processing}}
▲==See also==
▲*[[Fuzzy clustering]]
[[Category:Information retrieval techniques]]
|