Counting quantification: Difference between revisions

Content deleted Content added
Improve formatting
 
(4 intermediate revisions by 3 users not shown)
Line 1:
{{Short description|Mathematical logical term}}
A '''counting quantifier''' is a [[Mathematics|mathematical]] term for a [[Quantifier (logic)|quantifier]] of the form "there exists at least ''k'' elements that satisfy property ''X''".
In [[first-order logic]] with equality, counting quantifiers can be defined in terms of ordinary quantifiers, so in this context they are a notational shorthand.
Line 8 ⟶ 9:
Counting quantifiers can be defined [[recursive definition|recursively]] in terms of ordinary quantifiers.
 
Let <math>\exists^exists_{= k}</math> denote "there exist exactly <math>k</math>". Then
:<math>\begin{align}
\exists^exists_{= 0} x F(P x) &\leftrightarrow \neg \exists x F(P x) \\
\exists^exists_{= k+1} x F(P x) &\leftrightarrow \exists x (F(P x) \land \exists^exists_{= k} y (P y \neqland xy \landneq F(y)x))
\end{align}</math>
Let <math>\exists^exists_{\geq k}</math> denote "there exist at least <math>k</math>". Then
:<math>\begin{align}
\exists^exists_{\geq 0} x F(P x) &\leftrightarrow \top \\
\exists^exists_{\geq k+1} x F(P x) &\leftrightarrow \exists x (F(P x) \land \exists^exists_{\geq k} y (P y \neqland xy \landneq F(y)x))
\end{align}</math>
 
Line 22 ⟶ 23:
*[[Uniqueness quantification]]
*[[Lindström quantifier]]
*[[Spectrum of a sentence]]
 
== References ==