Artin approximation theorem: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Altered pages. Add: doi, volume. Formatted dashes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Moduli theory | #UCB_Category 19/26
 
(12 intermediate revisions by 7 users not shown)
Line 1:
{{Short description|1969 result in deformation theory}}
In [[mathematics]], the '''Artin approximation theorem''' is a fundamental result of {{harvs|last=Artin|first=Michael|txt|authorlink=Michael Artin|year=1969}} in [[deformation theory]] which implies that [[formal power series]] with coefficients in a [[field (mathematics)|field]] ''k'' are well-approximated by the [[algebraic function]]s on ''k''.
 
More precisely, Artin proved two such theorems: one, in 1968, on approximation of complex analytic solutions by formal solutions (in the case <math>k = C\Complex</math>); and an algebraic version of this theorem in 1969.
 
==Statement of the theorem==
Let <math>\mathbf{x} = x_1, \dots, x_n</math> denote a collection of ''n'' [[indeterminate (variable)|indeterminate]]s, <math>k[[\mathbf{x}]]</math> the [[ring (mathematics)|ring]] of formal [[power series]] with indeterminates <math>\mathbf{x}</math> over a field ''k'', and <math>\mathbf{y} = y_1, \dots, y_n</math> a different set of indeterminates. Let
Let
 
:<math>f(\mathbf{x}, \mathbf{y}) = 0</math>
:'''x''' = ''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>
 
be a system of [[polynomial equation]]s in ''<math>k''['''\mathbf{x'''}, '''\mathbf{y'''}]</math>, and ''c'' a positive [[integer]]. Then given a formal power series solution '''ŷ'''<math>\hat{\mathbf{y}}('''\mathbf{x'''}) \in ''k'''''<nowiki>[[\mathbf{x}]]</nowikimath>''', there is an algebraic solution '''<math>\mathbf{y'''}('''\mathbf{x'''})</math> consisting of [[algebraic function]]s (more precisely, algebraic power series) such that
denote a collection of ''n'' [[indeterminate (variable)|indeterminate]]s,
 
:<math>\hat{\mathbf{y}}(\mathbf{x}) \equiv \mathbf{y}(\mathbf{x}) \bmod (\mathbf{x})^c.</math>
''k'''''<nowiki>[[x]]</nowiki>''' the [[ring (mathematics)|ring]] of formal power series with indeterminates '''x''' over a field ''k'', and
 
: '''y''' = ''y''<sub>1</sub>, …, ''y''<sub>''m''</sub>
 
a different set of indeterminates. Let
 
:''f''('''x''', '''y''') = 0
 
be a system of [[polynomial equation]]s in ''k''['''x''', '''y'''], and ''c'' a positive [[integer]]. Then given a formal power series solution '''ŷ'''('''x''') ∈ ''k'''''<nowiki>[[x]]</nowiki>''' there is an algebraic solution '''y'''('''x''') consisting of [[algebraic function]]s (more precisely, algebraic power series) such that
 
:'''ŷ'''('''x''') ≡ '''y'''('''x''') mod ('''x''')<sup>''c''</sup>.
 
==Discussion==
Line 28 ⟶ 19:
The following alternative statement is given in Theorem 1.12 of {{harvs|last=Artin|first=Michael|txt|authorlink=Michael Artin|year=1969}}.
 
Let ''<math>R''</math> be a field or an excellent discrete valuation ring, let ''<math>A''</math> be the [[Henselian ring|henselization]] at a prime ideal of an ''<math>R''</math>-algebra of finite type at a prime ideal, let ''m'' be a proper ideal of ''<math>A''</math>, let <math> \hat{A}</math> be the ''m''-adic completion of ''<math>A''</math>, and let
 
:''F'': (''A''-algebras) → (sets),
 
be a functor sending filtered colimits to filtered colimits (Artin calls such a functor locally of finite presentation).
 
:<math>F\colon (A\text{-algebras}) \to (\text{sets}),</math>
Then for any integer ''c'' and any <math> \overline{\xi} \in F(\hat{A})</math> there is a <math> \xi \in F(A)</math> such that
 
be a functor sending filtered colimits to filtered colimits (Artin calls such a functor locally of finite presentation). Then for any integer ''c'' and any <math> \overline{\xi} \in F(\hat{A})</math>, there is a <math> \xi \in F(A)</math> such that
:<math>\overline{\xi}</math> ≡ <math>\xi</math> mod ''m''<sup>''c''</sup>.
 
:<math>\overline{\xi}</math> \equiv <math>\xi</math> mod\bmod ''m''<sup>''^c''</supmath>.
 
== See also ==
Line 45 ⟶ 33:
 
==References==
*{{Citation | last1=Artin | first1=Michael | author1-link=Michael Artin | title=Algebraic approximation of structures over complete local rings | url=http://www.numdam.org/item?id=PMIHES_1969__36__23_0 | mr=0268188 | year=1969 | journal=[[Publications Mathématiques de l'IHÉS]] | volume=36 | issue=36 | pages=23–58| doi=10.1007/BF02684596 }}
*{{cite book|last=Artin,|first= Michael. ''|title=Algebraic Spaces''.|publisher= [[Yale University Press]]|series=Yale Mathematical Monographs|volume= 3|___location=New Haven, CT–London|year= 1971.|mr=0407012}}
*{{citation|last=Raynaud|first= Michel|author-link=Michel Raynaud|title=Travaux récents de M. Artin| journal=[[Séminaire Nicolas Bourbaki]]|volume= 11 |year=1971|issue=363|pages= 279–295| url=http://www.numdam.org/book-part/SB_1968-1969__11__279_0/|mr=3077132}}
 
[[Category:Moduli theory]]
[[Category:Commutative algebra]]
[[Category:Theorems inabout abstract algebraalgebras]]