Content deleted Content added
(11 intermediate revisions by 4 users not shown) | |||
Line 11:
==Robbins–Monro algorithm==
The Robbins–Monro algorithm, introduced in 1951 by [[Herbert Robbins]] and [[John U. Monro#Personal life|Sutton Monro]],<ref name="rm">{{Cite journal | last1 = Robbins | first1 = H. | author-link = Herbert Robbins| last2 = Monro | first2 = S. | doi = 10.1214/aoms/1177729586 | title = A Stochastic Approximation Method | journal = The Annals of Mathematical Statistics | volume = 22 | issue = 3 | pages = 400 | year = 1951 | doi-access = free }}</ref> presented a methodology for solving a root finding problem, where the function is represented as an expected value. Assume that we have a function <math display="inline">M(\theta)</math>, and a constant <math display="inline">\alpha</math>, such that the equation <math display="inline">M(\theta) = \alpha</math> has a unique root at <math display="inline">\theta^*.</math>
Here, <math>a_1, a_2, \dots</math> is a sequence of positive step sizes. [[Herbert Robbins|Robbins]] and Monro proved<ref name="rm" /><sup>, Theorem 2</sup> that <math>\theta_n</math> [[convergence of random variables|converges]] in <math>L^2</math> (and hence also in probability) to <math>\theta^*</math>, and Blum<ref name=":0">{{Cite journal|last=Blum|first=Julius R.|date=1954-06-01|title=Approximation Methods which Converge with Probability one|journal=The Annals of Mathematical Statistics|language=EN|volume=25|issue=2|pages=382–386|doi=10.1214/aoms/1177728794|issn=0003-4851|doi-access=free}}</ref> later proved the convergence is actually with probability one, provided that:
Line 20:
* <math display="inline">M'(\theta^*)</math> exists and is positive, and
* The sequence <math display="inline">a_n</math> satisfies the following requirements:
<math display="block">\qquad \sum^{\infty}_{n=0}a_n = \infty \quad \mbox{ and } \quad \sum^{\infty}_{n=0}a^2_n < \infty \quad </math>
A particular sequence of steps which satisfy these conditions, and was suggested by Robbins–Monro, have the form: <math display="inline">a_n=a/n</math>, for <math display="inline"> a > 0 </math>. Other series, such as <math>a_n = \frac{1}{n \ln n}, \frac{1}{n \ln n \ln\ln n}, \dots</math> are possible but in order to average out the noise in <math display="inline">N(\theta)</math>, the above condition must be met. === Example ===
Consider the problem of estimating the mean <math>\theta^*</math> of a probability distribution from a stream of independent samples <math>X_1, X_2, \dots</math>.
Let <math>N(\theta) := \theta - X</math>, then the unique solution to <math display="inline">\operatorname E[N(\theta)] = 0</math> is the desired mean <math>\theta^*</math>. The RM algorithm gives us<math display="block">\theta_{n+1}=\theta_n - a_n(\theta_n - X_n) </math>This is equivalent to [[stochastic gradient descent]] with loss function <math>L(\theta) = \frac 12 \|X - \theta\|^2 </math>. It is also equivalent to a weighted average:<math display="block">\theta_{n+1}=(1-a_n)\theta_n + a_n X_n </math>In general, if there exists some function <math>L</math> such that <math>\nabla L(\theta) = N(\theta) - \alpha </math>, then the Robbins–Monro algorithm is equivalent to stochastic gradient descent with loss function <math>L(\theta)</math>. However, the RM algorithm does not require <math>L</math> to exist in order to converge.
===Complexity results===
Line 33 ⟶ 38:
Chung (1954)<ref>{{Cite journal|last=Chung|first=K. L.|date=1954-09-01|title=On a Stochastic Approximation Method|journal=The Annals of Mathematical Statistics|language=EN|volume=25|issue=3|pages=463–483|doi=10.1214/aoms/1177728716|issn=0003-4851|doi-access=free}}</ref> and Fabian (1968)<ref>{{Cite journal|last=Fabian|first=Vaclav|date=1968-08-01|title=On Asymptotic Normality in Stochastic Approximation|journal=The Annals of Mathematical Statistics|language=EN|volume=39|issue=4|pages=1327–1332|doi=10.1214/aoms/1177698258|issn=0003-4851|doi-access=free}}</ref> showed that we would achieve optimal convergence rate <math display="inline">O(1/\sqrt{n})</math> with <math display="inline">a_n=\bigtriangledown^2f(\theta^*)^{-1}/n</math> (or <math display="inline">a_n=\frac{1}{(nM'(\theta^*))}</math>). Lai and Robbins<ref>{{Cite journal|last1=Lai|first1=T. L.|last2=Robbins|first2=Herbert|date=1979-11-01|title=Adaptive Design and Stochastic Approximation|journal=The Annals of Statistics|language=EN|volume=7|issue=6|pages=1196–1221|doi=10.1214/aos/1176344840|issn=0090-5364|doi-access=free}}</ref><ref>{{Cite journal|last1=Lai|first1=Tze Leung|last2=Robbins|first2=Herbert|date=1981-09-01|title=Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes|journal=Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete|language=en|volume=56|issue=3|pages=329–360|doi=10.1007/BF00536178|s2cid=122109044|issn=0044-3719|doi-access=free}}</ref> designed adaptive procedures to estimate <math display="inline">M'(\theta^*)</math> such that <math display="inline">\theta_n</math> has minimal asymptotic variance. However the application of such optimal methods requires much a priori information which is hard to obtain in most situations. To overcome this shortfall, Polyak (1991)<ref>{{Cite journal|last=Polyak|first=B T|date=1991|title=New stochastic approximation type procedures. (In Russian.)|url=https://www.researchgate.net/publication/236736759|journal=Automation and Remote Control|volume=7|issue=7}}</ref> and Ruppert (1988)<ref>{{Cite report|last=Ruppert|first=David|title=Efficient estimators from a slowly converging robbins-monro process|url=https://www.researchgate.net/publication/242608650|type=Technical Report 781|publisher=Cornell University School of Operations Research and Industrial Engineering|year=1988}}</ref> independently developed a new optimal algorithm based on the idea of averaging the trajectories. Polyak and Juditsky<ref name="pj">{{Cite journal | last1 = Polyak | first1 = B. T. | last2 = Juditsky | first2 = A. B. | doi = 10.1137/0330046 | title = Acceleration of Stochastic Approximation by Averaging | journal = SIAM Journal on Control and Optimization | volume = 30 | issue = 4 | pages = 838 | year = 1992 }}</ref> also presented a method of accelerating Robbins–Monro for linear and non-linear root-searching problems through the use of longer steps, and averaging of the iterates. The algorithm would have the following structure:<math display="block"> \theta_{n+1} - \theta_n = a_n(\alpha - N(\theta_n)), \qquad \bar{\theta}_n = \frac{1}{n} \sum^{n-1}_{i=0} \theta_i </math>The convergence of <math> \bar{\theta}_n </math> to the unique root <math>\theta^*</math> relies on the condition that the step sequence <math>\{a_n\}</math> decreases sufficiently slowly. That is
'''''A1)'''''
Therefore, the sequence <math display="inline">a_n = n^{-\alpha}</math> with <math display="inline">0 < \alpha < 1</math> satisfies this restriction, but <math display="inline">\alpha = 1</math> does not, hence the longer steps. Under the assumptions outlined in the Robbins–Monro algorithm, the resulting modification will result in the same asymptotically optimal convergence rate <math display="inline">O(1/\sqrt{n})</math> yet with a more robust step size policy.<ref name="pj" /> Prior to this, the idea of using longer steps and averaging the iterates had already been proposed by Nemirovski and Yudin<ref name="NY">On Cezari's convergence of the steepest descent method for approximating saddle points of convex-concave functions, A. Nemirovski and D. Yudin, ''Dokl. Akad. Nauk SSR'' '''2939''', (1978 (Russian)), Soviet Math. Dokl. '''19''' (1978 (English)).</ref> for the cases of solving the stochastic optimization problem with continuous convex objectives and for convex-concave saddle point problems. These algorithms were observed to attain the nonasymptotic rate <math display="inline">O(1/\sqrt{n})</math>.
Line 43 ⟶ 48:
With assumption '''A1)''' and the following '''A2)'''
'''''A2)''''' ''There is a Hurwitz matrix <math display="inline">A</math> and a symmetric and positive-definite matrix <math display="inline">\Sigma</math> such that <math display="inline">\{U^n(\cdot)\}</math> converges weakly to <math display="inline">U(\cdot)</math>, where <math display="inline">U(\cdot)</math> is the statisolution to
satisfied, and define ''<math display="inline">\bar{V}=(A^{-1})'\Sigma(A')^{-1}</math>''. Then for each ''<math display="inline">t</math>'',
Line 52 ⟶ 57:
=== Application in stochastic optimization ===
Suppose we want to solve the following stochastic optimization problem<math display="block">g(\theta^*) = \min_{\theta\in\Theta}\operatorname{E}[Q(\theta,X)],</math>where <math display="inline">g(\theta) = \operatorname{E}[Q(\theta,X)]</math> is differentiable and convex, then this problem is equivalent to find the root <math>\theta^*</math> of <math>\nabla g(\theta) = 0</math>. Here <math>Q(\theta,X)</math> can be interpreted as some "observed" cost as a function of the chosen <math>\theta</math> and random effects <math>X</math>. In practice, it might be hard to get an analytical form of <math>\nabla g(\theta)</math>, Robbins–Monro method manages to generate a sequence <math>(\theta_n)_{n\geq 0}</math> to approximate <math>\theta^*</math> if one can generate <math>(X_n)_{n\geq 0}▼
▲<math display="block">g(\theta^*) = \min_{\theta\in\Theta}\operatorname{E}[Q(\theta,X)],</math>where <math display="inline">g(\theta) = \operatorname{E}[Q(\theta,X)]</math> is differentiable and convex, then this problem is equivalent to find the root <math>\theta^*</math> of <math>\nabla g(\theta) = 0</math>. Here <math>Q(\theta,X)</math> can be interpreted as some "observed" cost as a function of the chosen <math>\theta</math> and random effects <math>X</math>. In practice, it might be hard to get an analytical form of <math>\nabla g(\theta)</math>, Robbins–Monro method manages to generate a sequence <math>(\theta_n)_{n\geq 0}</math> to approximate <math>\theta^*</math> if one can generate <math>(X_n)_{n\geq 0}
</math> , in which the conditional expectation of <math>X_n
Line 71 ⟶ 74:
The following result gives sufficient conditions on <math>\theta_n
</math> for the algorithm to converge:<ref>{{Cite book|title=Numerical Methods for stochastic Processes|last1=Bouleau|first1=N.|author-link=Nicolas Bouleau|last2=Lepingle|first2=D.|publisher=John Wiley|year=1994|isbn=9780471546412|___location=New York|url=https://books.google.com/books?id=9MLL2RN40asC}}</ref>
C1) <math>\varepsilon_n \geq 0, \forall\; n\geq 0. </math>
|