Stochastic approximation: Difference between revisions

Content deleted Content added
 
(5 intermediate revisions by 2 users not shown)
Line 11:
 
==Robbins–Monro algorithm==
The Robbins–Monro algorithm, introduced in 1951 by [[Herbert Robbins]] and [[John U. Monro#Personal life|Sutton Monro]],<ref name="rm">{{Cite journal | last1 = Robbins | first1 = H. | author-link = Herbert Robbins| last2 = Monro | first2 = S. | doi = 10.1214/aoms/1177729586 | title = A Stochastic Approximation Method | journal = The Annals of Mathematical Statistics | volume = 22 | issue = 3 | pages = 400 | year = 1951 | doi-access = free }}</ref> presented a methodology for solving a root finding problem, where the function is represented as an expected value. Assume that we have a function <math display="inline">M(\theta)</math>, and a constant <math display="inline">\alpha</math>, such that the equation <math display="inline">M(\theta) = \alpha</math> has a unique root at <math display="inline">\theta^*.</math>. It is assumed that while we cannot directly observe the function <math display="inline">M(\theta),</math>, we can instead obtain measurements of the random variable <math display="inline">N(\theta)</math> where <math display="inline">\operatorname E[N(\theta)] = M(\theta)</math>. The structure of the algorithm is to then generate iterates of the form:
 
<math display="block">\theta_{n+1}=\theta_n - a_n(N(\theta_n) - \alpha)</math>
Line 22:
 
<math display="block">\qquad \sum^{\infty}_{n=0}a_n = \infty \quad \mbox{ and } \quad \sum^{\infty}_{n=0}a^2_n < \infty \quad </math>
A particular sequence of steps which satisfy these conditions, and was suggested by Robbins–Monro, have the form: <math display="inline">a_n=a/n</math>, for <math display="inline"> a > 0 </math>. Other series, such as <math>a_n = \frac{1}{n \ln n}, \frac{1}{n \ln n \ln\ln n}, \dots</math> are possible but in order to average out the noise in <math display="inline">N(\theta)</math>, the above condition must be met.
 
=== Example ===
Consider the problem of estimating the mean <math>\theta^*</math> of a probability distribution from a stream of independent samples <math>X_1, X_2, \dots</math>.
 
Let <math>N(\theta) := \theta - X</math>, then the unique solution to <math display="inline">\operatorname E[N(\theta)] = 0</math> is the desired mean <math>\theta^*</math>. The RM algorithm gives us<math display="block">\theta_{n+1}=\theta_n - a_n(\theta_n - X_n) </math>This is equivalent to [[stochastic gradient descent]] with loss function <math>L(\theta) = \frac 12 \|X - \theta\|^2 </math>. It is also equivalent to a weighted average:<math display="block">\theta_{n+1}=(1-a_n)\theta_n + a_n X_n </math>In general, if there exists some function <math>L</math> such that <math>\nabla L(\theta) = N(\theta) - \alpha </math>, then the Robbins–Monro algorithm is equivalent to stochastic gradient descent with loss function <math>L(\theta)</math>. However, the RM algorithm does not require <math>L</math> to exist in order to converge.
 
In general, if there exists some function <math>L</math> such that <math>\nabla L(\theta) = N(\theta) - \alpha </math>, then the Robbins–Monro algorithm is equivalent to stochastic gradient descent with loss function <math>L(\theta)</math>
 
===Complexity results===