Balanced polygamma function: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: doi, pages. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Gamma and related functions | #UCB_Category 30/38
Sure Beae (talk | contribs)
Relations: Fixed the improper algebra. The duplication formula introduced in the paper cannot be used like it was.
 
(One intermediate revision by one other user not shown)
Line 26:
\psi^{(n)}(x)&=\psi(n,x) \qquad n\in\mathbb{N} \\
\Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\
\zeta(z, q)&=\frac{\Gamma (-1-z)}{\ln 2} \left(2^{-z} {\psi \leftGamma(z-1,\frac{q+1}{2}\right)+2^{-z} \psi \left(z - 1,\frac{ q}{2}\right)-\psi(z-1,q)\right)\\
\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\
B_n(q) &= -\frac{\Gamma (n+1)}{\ln 2} \left(2^{n-1} \psi\left(-n,\frac{q+1}{2}\right)+2^{n-1} \psi\left(-n,\frac{q}{2}\right)-\psi(-n,q)\right)
\end{align}</math>
 
where {{math|''B<sub>n</sub>''(''q'')}} are the [[Bernoulli polynomials]]
 
:<math>K(z)=A \exp\left(\psi(-2,z)+\frac{z^2-z}{2}\right)</math>
Line 40 ⟶ 37:
The balanced polygamma function can be expressed in a closed form at certain points (where {{mvar|A}} is the [[Glaisher constant]] and {{mvar|G}} is the [[Catalan constant]]):
:<math>\begin{align}
\psi\left(-2,\tfrac14\right)&=\tfrac18\ln 2\pi+\tfrac98\ln A+\frac{G}{4\pi} && \\
\psi\left(-2,\tfrac12\right)&=\tfrac14\ln\pi+\tfrac32tfrac12\ln A+-\tfrac5tfrac{1}{24}\ln2ln 2 & \\
\psi\left(-3,\tfrac12\right)&=\tfrac1{16}\ln 2\pi+\tfrac12\ln A+\frac{73\zeta(3)}{32\pi^2}\\
\psi(-2,1)&=\tfrac12-\ln 2\piA &\\
\psi(-3,1)&=\tfrac14frac{-\ln 2zeta(3)}{8\pi+\ln A^2}\\
\psi(-2,2)&=-\ln 2\piA-1 &\\
\psi(-3,2)&=\ln 2frac{-\zeta(3)}{8\pi+^2\ln A}-\tfrac34 \\\end{align}</math>
 
==References==