Content deleted Content added
No edit summary |
→Relations: Fixed the improper algebra. The duplication formula introduced in the paper cannot be used like it was. |
||
(24 intermediate revisions by 16 users not shown) | |||
Line 1:
In mathematics, the '''generalized polygamma function''' or '''balanced negapolygamma function''' is a function introduced by Olivier Espinosa Aldunate and [[Victor
It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders.
It is defined as follows:▼
==Definition==
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+(\psi(-z)+\gamma ) \zeta (z+1,q)}{\Gamma (-z)} \, </math>▼
▲: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+\bigl(\psi(-z)+\gamma \bigr) \zeta (z+1,q)}{\Gamma (-z)}
or alternatively,
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right),</math>
where {{math|''ψ''(''z'')}} is the [[polygamma function]] and {{math|''ζ''(''z'',''q'')}}, is the [[Hurwitz zeta function]].
Several special functions can be expressed in terms of generalized polygamma function.▼
The function is balanced, in that it satisfies the conditions
* <math>\psi(x)=\psi(0,x)\,</math>▼
:<math>f(0)=f(1) \quad \text{and} \quad \int_0^1 f(x)\, dx = 0</math>.
==Relations==
* <math>\psi^{(n)}(x)=\psi(n,x)\,\,\,(n\in\mathbb{N})</math>▼
▲Several special functions can be expressed in terms of generalized polygamma function.
* <math>\Gamma(x)=e^{\psi(-1,x)+\frac 12 \ln(2\pi)}\,\,\,</math>▼
:<math>\begin{align}
\zeta(z, q)&=\frac{(-1)^z}{\Gamma(z)} \psi(z - 1, q)\\
\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\
\end{align}</math>
▲* <math>K(z)=A e^{\psi(-2,z)+\frac{z^2-z}{2}}</math>
==Special values==
▲:where ''K''(''z'') is [[K-function]] and A is [[Glaisher constant]].
The balanced polygamma function can be expressed in a closed form at certain points (where {{mvar|A}} is the [[Glaisher constant]] and {{mvar|G}} is the [[Catalan constant]]):
:<math>\begin{align}
\psi\left(-2,\tfrac14\right)&=\tfrac18\ln A+\frac{G}{4\pi} && \\
\psi\left(-2,\tfrac12\right)&=\tfrac12\ln A-\tfrac{1}{24}\ln 2 & \\
\psi\left(-3,\tfrac12\right)&=\frac{3\zeta(3)}{32\pi^2}\\
\psi(-2,1)&=-\ln A &\\
\psi(-3,1)&=\frac{-\zeta(3)}{8\pi^2}\\
\psi(-2,2)&=-\ln A-1 &\\
\psi(-3,2)&=\frac{-\zeta(3)}{8\pi^2}-\tfrac34 \\\end{align}</math>
==References==
|