Balanced polygamma function: Difference between revisions

Content deleted Content added
BG19bot (talk | contribs)
m Remove blank line(s) between list items per WP:LISTGAP to fix an accessibility issue for users of screen readers. Do WP:GENFIXES and cleanup if needed. Discuss this at Wikipedia talk:WikiProject Accessibility#LISTGAP
Sure Beae (talk | contribs)
Relations: Fixed the improper algebra. The duplication formula introduced in the paper cannot be used like it was.
 
(16 intermediate revisions by 10 users not shown)
Line 1:
In mathematics, the '''generalized polygamma function''' or '''balanced negapolygamma function''' is a function introduced by Olivier Espinosa Aldunate and [[Victor Moll|Victor H.Hugo Moll]].<ref>[{{cite journal|url=http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf |first1=Olivier |last1=Espinosa|first2=Victor Hugo|last2=Moll |author-link2=Victor H.Hugo Moll. |title=A Generalized polygamma function. |journal=Integral Transforms and Special Functions Vol. |volume=15, No. |issue=2, April|date=Apr 2004, pp|pages=101–115|doi=10.1080/10652460310001600573 101–115]}}{{open access}}</ref>
 
It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders.
Line 7:
The generalized polygamma function is defined as follows:
 
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+\bigl(\psi(-z)+\gamma \bigr) \zeta (z+1,q)}{\Gamma (-z)} \, </math>
or alternatively,
Line 13:
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right),</math>
 
where <{{math>\psi|''ψ''(''z'')</math>}} is the [[Polygammapolygamma function]] and <{{math>\zeta|''ζ''(''z'',''q'')}},</math> is the [[Hurwitz zeta function]].
 
The function is balanced, in that it satisfies the conditions
:<math>f(0)=f(1)</math> \quad \text{and} \quad <math>\int_0^1 f(x)\, dx = 0</math>.
 
==Relations==
Line 21 ⟶ 22:
Several special functions can be expressed in terms of generalized polygamma function.
 
* :<math>\psi(x)=\psi(0,x)\,</math>begin{align}
* <math>\psi^{(n)}(x) &= \psi(n0,x)\,\,\,(n\in\mathbb{N})</math>
* <math>\Gammapsi^{(n)}(x)&=e^{\psi(-1n,x)+\frac 12\qquad n\ln(2in\pi)mathbb{N} \,\,\,</math>
\Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\
* <math>\zeta(z,q)=\frac{\Gamma (1-z) \left(2^{-z} \left(\psi \left(z-1,\frac{q}{2}+\frac{1}{2}\right)+\psi \left(z-1,\frac{q}{2}\right)\right)-\psi(z-1,q)\right)}{\ln(2)}</math>
\zeta(z, q)&=\frac{(-1)^z}{\Gamma(z)} \psi(z - 1, q)\\
* <math>\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12}</math> \\
* <math>B_n(q) = -\frac{\Gamma (n+1) \left(2^{n-1} \left(\psi\left(-n,\frac{q}{2}+\frac{1}{2}\right)+\psi\left(-n,\frac{q}{2}\right)\right)-\psi(-n,q)\right)}{\ln (2)}</math>
\end{align}</math>
 
* :<math>K(z)=A e^{\exp\left(\psi(-2,z)+\frac{z^2-z}{2}}\right)</math>
where <math>B_n(q)</math> are [[Bernoulli polynomials]]
 
where {{math|''K''(''z'')}} is the [[K-function|{{mvar|K}}-function]] and {{mvar|A}} is the [[Glaisher constant]].
* <math>K(z)=A e^{\psi(-2,z)+\frac{z^2-z}{2}}</math>
 
where ''K''(''z'') is [[K-function]] and A is the [[Glaisher constant]].
 
==Special values==
The balanced polygamma function can be expressed in a closed form at certain points (where {{mvar|A}} is the [[Glaisher constant]] and {{mvar|G}} is the [[Catalan constant]]):
:<math>\begin{align}
* <math>\psi\left(-2,\frac14\right)=\frac18\ln(2\pi)+\frac98\ln A+\frac{G}{4\pi},</math> where <math>A</math> is the [[Glaisher constant]] and <math>G</math> is the [[Catalan constant]].
* <math>\psi\left(-2, \frac12tfrac14\right)&=\frac14\ln\pi+\frac32tfrac18\ln A+\frac5frac{24G}{4\pi} && \\ln2</math>
\psi\left(-2,\tfrac12\right)&=\tfrac12\ln A-\tfrac{1}{24}\ln 2 & \\
* <math>\psi(-2,1)=\frac12\ln(2\pi)</math>
* <math>\psi\left(-3,\frac12tfrac12\right)&=\frac1{16}\ln(2\pi)+\frac12\ln A+\frac{7\,3\zeta(3)}{32\,\pi^2}</math>\\
* <math>\psi(-2,2)=\ln(2\pi)-1</math>
\psi(-2,1)&=-\ln A &\\
* <math>\psi\left(-3,\frac12\right)=\frac1{16}\ln(2\pi)+\frac12\ln A+\frac{7\,\zeta(3)}{32\,\pi^2}</math>
* <math>\psi(-3,1)&=\frac14frac{-\lnzeta(23)}{8\pi)+^2}\\ln A</math>
* <math>\psi(-32,2)&=\ln(2\pi)+2-\ln A-1 &\\frac34</math>
\psi(-3,2)&=\frac{-\zeta(3)}{8\pi^2}-\tfrac34 \\\end{align}</math>
 
==References==