Balanced polygamma function: Difference between revisions

Content deleted Content added
Sure Beae (talk | contribs)
Relations: Fixed the improper algebra. The duplication formula introduced in the paper cannot be used like it was.
 
(8 intermediate revisions by 8 users not shown)
Line 1:
In mathematics, the '''generalized polygamma function''' or '''balanced negapolygamma function''' is a function introduced by Olivier Espinosa Aldunate and [[Victor Moll|Victor H.Hugo Moll]].<ref>{{cite journal|url=http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf|first1=Olivier|last1=Espinosa|first2=Victor H.Hugo|last2=Moll |author-link2=Victor Hugo Moll |title=A Generalized polygamma function|journal=Integral Transforms and Special Functions|volume=15|issue=2|date=Apr 2004|pagepages=101–115|doi=10.1080/10652460310001600573 }}{{open access}}</ref>
 
It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders.
Line 7:
The generalized polygamma function is defined as follows:
 
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+\bigbigl(\psi(-z)+\gamma \bigbigr) \zeta (z+1,q)}{\Gamma (-z)} </math>
or alternatively,
Line 13:
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right),</math>
 
where {{math|''ψ''(''z'')}} is the [[Polygammapolygamma function]] and {{math|''ζ''(''z'',''q'')}}, is the [[Hurwitz zeta function]].
 
The function is balanced, in that it satisfies the conditions
Line 26:
\psi^{(n)}(x)&=\psi(n,x) \qquad n\in\mathbb{N} \\
\Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\
\zeta(z, q)&=\frac{\Gamma (-1-z)}{\ln 2} \left(2^{-z} {\psi \leftGamma(z-1,\frac{q+1}{2}\right)+2^{-z} \psi \left(z - 1,\frac{ q}{2}\right)-\psi(z-1,q)\right)\\
\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\
B_n(q) &= -\frac{\Gamma (n+1)}{\ln 2} \left(2^{n-1} \psi\left(-n,\frac{q+1}{2}\right)+2^{n-1} \psi\left(-n,\frac{q}{2}\right)-\psi(-n,q)\right)
\end{align}</math>
 
where {{math|''B<sub>n</sub>''(''q'')}} are [[Bernoulli polynomials]]
 
:<math>K(z)=A \exp\left(\psi(-2,z)+\frac{z^2-z}{2}\right)</math>
Line 40 ⟶ 37:
The balanced polygamma function can be expressed in a closed form at certain points (where {{mvar|A}} is the [[Glaisher constant]] and {{mvar|G}} is the [[Catalan constant]]):
:<math>\begin{align}
\psi\left(-2,\tfrac14\right)&=\tfrac18\ln 2\pi+\tfrac98\ln A+\frac{G}{4\pi} && \\
\psi\left(-2,\tfrac12\right)&=\tfrac14\ln\pi+\tfrac32tfrac12\ln A+-\tfrac5tfrac{1}{24}\ln2ln 2 & \\
\psi\left(-3,\tfrac12\right)&=\tfrac1{16}\ln 2\pi+\tfrac12\ln A+\frac{73\zeta(3)}{32\pi^2}\\
\psi(-2,1)&=\tfrac12-\ln 2\piA &\\
\psi(-3,1)&=\tfrac14frac{-\ln 2zeta(3)}{8\pi+\ln A^2}\\
\psi(-2,2)&=-\ln 2\piA-1 &\\
\psi(-3,2)&=\ln 2frac{-\zeta(3)}{8\pi+^2\ln A}-\tfrac34 \\\end{align}</math>
 
==References==