Modular lambda function: Difference between revisions

Content deleted Content added
Bumpf (talk | contribs)
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(7 intermediate revisions by 6 users not shown)
Line 1:
{{short description|Symmetric holomorphic function}}
[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]
In [[mathematics]], the '''modular lambda''' function λ(τ)<ref group="note><math>\lambda(\tau)</math> is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in <math>\lambda(\tau)</math>. Some authors use a non-equivalent definition of "modular functions".</ref> is a highly symmetric [[holomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] <math>\mathbb{C}/\langle 1, \tau \rangle</math>, where the map is defined as the quotient by the [&minus;1] involution.
 
The q-expansion, where <math>q = e^{\pi i \tau}</math> is the [[Nome (mathematics)|nome]], is given by:
Line 55 ⟶ 56:
 
which is the ''j''-invariant of the elliptic curve of [[Legendre form]] <math>y^2=x(x-1)(x-\lambda)</math>
 
Given <math>m\in\mathbb{C}\setminus\{0,1\}</math>, let
:<math>\tau=i\frac{K\{1-m\}}{K\{m\}}</math>
where <math>K</math> is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]] with parameter <math>m=k^2</math>.
Then
:<math>\lambda (\tau)=m.</math>
 
==Modular equations==
Line 96 ⟶ 103:
:<math>\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.</math>
 
<math>K(\lambda^*(x))</math> and <math>E(\lambda^*(x))</math> (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any <math>x\in\mathbb{Q}^+</math>, as Selberg and Chowla proved in 1949.<ref>{{Cite web|url=https://www.semanticscholar.org/paper/On-Epstein's-Zeta-Function-(I).-Chowla-Selberg/87dc02200853b431bfa900e297cd6c2f80a5a4b1journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|websitejournal=Proceedings of the National Academy of Sciences |date=1949 |volume=Semantic35 |issue=7 Scholar|page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 |doi-access=free|pmc=1063041}}</ref><ref>{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pagepages=86–110}}</ref>
 
The following expression is valid for all <math>n \in \mathbb{N}</math>:
Line 120 ⟶ 127:
:<math>\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}</math>
 
<math display=block>\begin{align}
:<math>& a^{86}+b-f^{86}-7a^4b^4 = 2\sqrt{2}ab2af +2\sqrt{2}a2a^7b5f^75\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(bf = \left[\frac{2\lambda^*(49x25x)}{1-\lambda^*(49x25x)^2}\right]^{1/12}\right) </math>\\
:<math> &a^{128}-c+b^{128}-7a^4b^4 = 2\sqrt{2}(acab+a^3c^3)(1+3a^2c^2+\sqrt{2}a^4c7b^4)(2+3a^2c^2+2a^4c^4)7\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(cb = \left[\frac{2\lambda^*(121x49x)}{1-\lambda^*(121x49x)^2}\right]^{1/12}\right) </math>\\
 
:<math>& a^{612}-fc^{612} = 2af 2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2+2a^5f4c^54)\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(fc = \left[\frac{2\lambda^*(25x121x)}{1-\lambda^*(25x121x)^2}\right]^{1/12}\right) </math>\\
 
:<math>a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) </math>
 
:<math>a^{12}-c^{12} = 2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2+2a^4c^4)\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(c = \left[\frac{2\lambda^*(121x)}{1-\lambda^*(121x)^2}\right]^{1/12}\right) </math>
 
:<math> & (a^2-d^2)(a^4+d^4-7a^2d^2)[(a^2-d^2)^4-a^2d^2(a^2+d^2)^2] = 8ad+8a^{13}d^{13}\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(d = \left[\frac{2\lambda^*(169x)}{1-\lambda^*(169x)^2}\right]^{1/12}\right) </math>
\end{align}
</math>
 
{{Collapse top|title=Special values}}