Local zeta function: Difference between revisions

Content deleted Content added
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1:
In [[number theorymathematics]], the '''local zeta function''' {{math|''Z''(''V'', ''s'')}} (sometimes called the '''congruent zeta function''' or the [[Hasse–Weil zeta function]]) is defined as
 
:<math>Z(V, s) = \exp\left(\sum_{k = 1}^\infty \frac{N_k}{k} (q^{-s})^k\right)</math>
Line 17:
}}</ref>
 
Making the variable transformation {{math|''ut''&nbsp;{{=}}&nbsp;''q''<sup>−''s''</sup>,}} gives
:<math>
\mathit{Z} (V,ut) = \exp
\left( \sum_{k=1}^{\infty} N_k \frac{ut^k}{k} \right)
</math>
as the [[formal power series]] in the variable <math>ut</math>.
 
Equivalently, the local zeta function is sometimes defined as follows:
Line 29:
</math>
:<math>
(2)\ \ \frac{d}{dudt} \log \mathit{Z} (V,ut) = \sum_{k=1}^{\infty} N_k ut^{k-1}\ .</math>
 
In other words, the local zeta function {{math|''Z''(''V'',&nbsp;''ut'')}} with coefficients in the [[finite field]] {{math|'''F'''<sub>''q''</sub>}} is defined as a function whose [[logarithmic derivative]] generates the number {{math|''N''<sub>''k''</sub>}} of solutions of the equation defining {{mvar|V}} in the degree {{mvar|k}} extension {{math|'''F'''<sub>''q''<sup>''k''</sup></sub>.}}
 
<!--In [[number theory]], a '''local zeta function'''
Line 46:
:<math>[ F_k : F ] = k \,</math>,
 
for ''k'' = 1, 2, ... . When ''F'' hasis the unique field with ''q'' elements, ''F<sub>k</sub>'' hasis the unique field with <math>q^k</math> elements. Given a set of polynomial equations &mdash; or an [[algebraic variety]] ''V'' &mdash; defined over ''F'', we can count the number
 
:<math>N_k \,</math>
Line 96:
==Motivations==
 
The relationship between the definitions of ''G'' and ''Z'' can be explained in a number of ways. (See for example the infinite product formula for ''Z'' below.) In practice it makes ''Z'' a [[rational function]] of ''t'', something that is interesting even in the case of ''V'' an [[elliptic curve]] over a finite field.
 
The local ''Z'' zeta functions are multiplied to get global ''<math>\zeta</math>'' zeta functions,