Content deleted Content added
m Task 18 (cosmetic): eval 6 templates: del empty params (2×); |
wtf was that |
||
(10 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Method to find best fit of a time-series model}}
In [[time series analysis]], the '''Box–Jenkins method
==Modeling approach==
The original model uses an iterative three-stage modeling approach:
#''
#''[[Parameter estimation]]'' using computation algorithms to arrive at coefficients that best fit the selected ARIMA model. The most common methods use [[maximum likelihood estimation]] or [[non-linear least-squares estimation]].
#''[[Statistical model validation|Statistical model checking]]'' by testing whether the estimated model conforms to the specifications of a stationary univariate process. In particular, the residuals should be independent of each other and constant in mean and variance over time. (Plotting the mean and variance of residuals over time and performing a [[Ljung–Box test]] or plotting autocorrelation and partial autocorrelation of the residuals are helpful to identify misspecification.) If the estimation is inadequate, we have to return to step one and attempt to build a better model.
The data they used were from a gas furnace. These data are well known as the Box and Jenkins gas furnace data for benchmarking predictive models.
Commandeur & Koopman (2007, §10.4)<ref>{{cite book |
==Box–Jenkins model identification==
Line 17 ⟶ 18:
====Detecting stationarity====
Stationarity can be assessed from a [[run sequence plot]]. The run sequence plot should show constant ___location and [[Scale (ratio)|scale]]. It can also be detected from an [[autocorrelation plot]]. Specifically, non-stationarity is often indicated by an autocorrelation plot with very slow decay. One can also utilize a [[Dickey-Fuller test]] or [[Augmented Dickey-Fuller test]].
====Detecting seasonality====
Seasonality (or periodicity) can usually be assessed from an autocorrelation plot, a [[seasonal subseries plot]], or a [[spectral plot]].
====Differencing to achieve stationarity====
Box and Jenkins recommend the differencing approach to achieve stationarity. However, [[curve fitting|fitting a curve]] and subtracting the fitted values from the original data can also be used in the context of Box–Jenkins models.
Line 29 ⟶ 30:
===Identify ''p'' and ''q''===
Once stationarity and seasonality have been addressed, the next step is to identify the order (i.e. the ''p'' and ''q'') of the autoregressive and moving average terms. Different authors have different approaches for identifying ''p'' and ''q''. Brockwell and Davis (1991)<ref>{{cite book |
====Autocorrelation and partial autocorrelation plots====
Line 53 ⟶ 54:
| Autoregressive model. Use the partial autocorrelation plot to help identify the order.
|-
! One or more spikes, rest are essentially zero (or close to zero)
| [[Moving average model]], order identified by where plot becomes zero.
|-
Line 65 ⟶ 66:
| Include seasonal autoregressive term.
|-
! No decay to zero (or it decays extremely slowly)
| Series is not stationary.
|}
Hyndman & Athanasopoulos suggest the following:<ref>{{cite
:The data may follow an ARIMA(''p'',''d'',0) model if the ACF and PACF plots of the differenced data show the following patterns:
Line 99 ⟶ 100:
==Further reading==
* {{citation | title= Comparison of Box–Jenkins and objective methods for determining the order of a non-seasonal ARMA model | author1-first= S. | author1-last= Beveridge | author2-first= C. | author2-last= Oickle | journal= [[Journal of Forecasting]] | year= 1994 | volume= 13 | issue= 5 | pages=
* {{citation |last=Pankratz |first=Alan |year=1983 |title=Forecasting with Univariate Box–Jenkins Models: Concepts and Cases |publisher= [[John Wiley & Sons]] }}
Line 109 ⟶ 110:
{{NIST-PD}}
{{Authority control}}
{{DEFAULTSORT:Box-Jenkins}}
|