Content deleted Content added
Add category |
|||
(48 intermediate revisions by 24 users not shown) | |||
Line 1:
{{Short description|A number whose first n digits is a multiple of n}}
{{refimprove|date=October 2018}}
In [[mathematics]] a '''polydivisible number''' (or '''magic number''') is a [[natural number|number]] in a given [[number base]] with [[numerical digit|digits]] ''abcde...'' that has the following properties:<ref name="moloy_de">{{Citation|url=https://www.researchgate.net/publication/317116429|title=MATH'S BELIEVE IT OR NOT|last=De|first=Moloy}}</ref>
# Its first digit ''a'' is not 0.
Line 6 ⟶ 8:
# The number formed by its first three digits ''abc'' is a multiple of 3.
# The number formed by its first four digits ''abcd'' is a multiple of 4.
# etc.
==Definition==
Let <math>n</math> be a
: <math>\left\lfloor\frac{n
; Example
For example, 10801 is a seven-digit polydivisible number in [[base 4]], as
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
: <math>\left\lfloor\frac{10801
==Enumeration==
Line 25 ⟶ 29:
===Maximum polydivisible number===
{| class="wikitable"
|-
! Base <math>b</math>
! Maximum polydivisible number ({{OEIS2C|A109032}})
! Number of base-''b'' digits
|-
| [[base 2|2]] || {{math|10<sub>2</sub>}} || 2
|-
| [[base
|-
| [[base
|-
| [[base
|-
| [[base 10|10]] || {{math|36085 28850 36840 07860 36725}}<ref name="Parker" /><ref name="Wells">{{Citation|last=Wells|first=David|title=The Penguin Dictionary of Curious and Interesting Numbers|page=197|publisher=Penguin Books|year=1986|isbn=9780140261493|via=Google Books|url=https://books.google.com/books?id=kQRPkTkk_VIC&pg=PA197
|-
| [[base 12|12]] || {{math|6068 903468 50BA68 00B036 206464<sub>12</sub>}} || 28
|-
|}
===Estimate for ''F<
[[File:Graph of polydivisible number vectorial.svg|right|thumb|400px|Graph of number of <math>n</math>-digit polydivisible numbers in base 10 <math>F_{10}(n)</math> vs estimate of <math>F_{10}(n)</math>]]
Let <math>n</math> be the number of digits. The function <math>F_b(n)</math> determines the number of polydivisible numbers that has <math>n</math> digits in base <math>b</math>, and the function <math>\Sigma(b)</math> is the total number of polydivisible numbers in base <math>b</math>.
If <math>k</math> is a polydivisible number in base <math>b</math> with <math>n - 1</math> digits, then it can be extended to create a polydivisible number with <math>n</math> digits if there is a number between <math>bk</math> and <math>b(k + 1) - 1</math> that is divisible by <math>n</math>. If <math>n</math> is less or equal to <math>b</math>, then it is always possible to extend an <math>n - 1</math> digit polydivisible number to an <math>n</math>-digit polydivisible number in this way, and indeed there may be more than one possible extension. If <math>n</math> is greater than <math>b</math>, it is not always possible to extend a polydivisible number in this way, and as <math>n</math> becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number with <math>n - 1</math> digits can be extended to a polydivisible number with <math>n</math> digits in <math>\frac{b}{n}</math> different ways. This leads to the following estimate for <math>F_{b}(n)</math>
:<math>F_b(n) \approx (b - 1)\frac{b^{n-1}}{n!}.</math>
Line 64 ⟶ 70:
! Percent Error
|-
| [[base 2|2]] || 2 || <math>\frac{
|-
| [[base 3|3]] || 15 || <math>\frac{2}{3}(e^{3} - 1) \approx 12.725</math> || -15.1%
|-
| [[base 4|4]] || 37 || <math>\frac{3}{4}(e^{4} - 1) \approx 40.199</math> || 8.64%
|-
| [[base 5|5]] || 127 || <math>\frac{4}{5}(e^{5} - 1) \approx 117.93</math> || −7.14%
|-
| [[base 10|10]] || 20456<ref name="Parker" /> || <math>\frac{9}{10}(e^{10} - 1) \approx 19823</math> || -3.09%
Line 81 ⟶ 89:
|-
! Length ''n''
! F<sub>
! Est. of F<sub>
! Polydivisible numbers
|-
Line 95 ⟶ 103:
|-
! Length ''n''
! F<sub>
! Est. of F<sub>
! Polydivisible numbers
|-
Line 119 ⟶ 127:
|-
! Length ''n''
! F<sub>
! Est. of F<sub>
! Polydivisible numbers
|-
Line 138 ⟶ 146:
|-
| 8 || 0 || 1 || <math>\varnothing</math>
|-
|}
===Base 5===
The polydivisible numbers in base 5 are
:1, 2, 3, 4, 11, 13, 20, 22, 24, 31, 33, 40, 42, 44, 110, 113, 132, 201, 204, 220, 223, 242, 311, 314, 330, 333, 402, 421, 424, 440, 443, 1102, 1133, 1322, 2011, 2042, 2200, 2204, 2231, 2420, 2424, 3113, 3140, 3144, 3302, 3333, 4022, 4211, 4242, 4400, 4404, 4431, 11020, 11330, 13220, 20110, 20420, 22000, 22040, 22310, 24200, 24240, 31130, 31400, 31440, 33020, 33330, 40220, 42110, 42420, 44000, 44040, 44310, 110204, 113300, 132204, 201102, 204204, 220000, 220402, 223102, 242000, 242402, 311300, 314000, 314402, 330204, 333300, 402204, 421102, 424204, 440000, 440402, 443102, 1133000, 1322043, 2011021, 2042040, 2204020, 2420003, 2424024, 3113002, 3140000, 3144021, 4022042, 4211020, 4431024, 11330000, 13220431, 20110211, 20420404, 24200031, 31400004, 31440211, 40220422, 42110202, 44310242, 132204314, 201102110, 242000311, 314000044, 402204220, 443102421, 1322043140, 2011021100, 3140000440, 4022042200
The smallest base 5 polydivisible numbers with ''n'' digits are
:1, 11, 110, 1102, 11020, 110204, 1133000, 11330000, 132204314, 1322043140, none...
The largest base 5 polydivisible numbers with ''n'' digits are
:4, 44, 443, 4431, 44310, 443102, 4431024, 44310242, 443102421, 4022042200, none...
The number of base 5 polydivisible numbers with ''n'' digits are
:4, 10, 17, 21, 21, 21, 13, 10, 6, 4, 0, 0, 0...
{| class="wikitable"
|-
! Length ''n''
! F<sub>5</sub>(''n'')
! Est. of F<sub>5</sub>(''n'')
|-
| 1 || 4 || 4
|-
| 2 || 10 || 10
|-
| 3 || 17 || 17
|-
| 4 || 21 || 21
|-
| 5 || 21 || 21
|-
| 6 || 21 || 17
|-
| 7 || 13 || 12
|-
| 8 || 10 || 8
|-
| 9 || 6 || 4
|-
| 10 || 4 || 2
|-
|}
Line 143 ⟶ 192:
===Base 10===
The polydivisible numbers in base 10 are
:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 105, 108, 120, 123, 126, 129, 141, 144, 147, 162, 165, 168, 180, 183, 186, 189, 201, 204, 207, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285, 288... {{OEIS|id=A144688}}
The smallest base 10 polydivisible numbers with ''n'' digits are
:1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800, ... {{OEIS|id=A214437}}
The largest base 10 polydivisible numbers with ''n'' digits are
:9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260, ... {{OEIS|id=A225608}}
The number of base 10 polydivisible numbers with ''n'' digits are
:9, 45, 150, 375, 750, 1200, 1713, 2227, 2492, 2492, 2225, 2041, 1575, 1132, 770, 571, 335, 180, 90, 44, 18, 12, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... {{OEIS|id=A143671}}
{| class="wikitable" style="float:left; margin-right:1em"
|-
! Length ''n''
! F<sub>10</sub>(''n'')<ref name="A143671">{{OEIS|id=A143671}}</ref>
! Est. of F<sub>10</sub>(''n'')
|-
| 1
Line 190 ⟶ 248:
| 2492
| 2480
|-
| 11
Line 236 ⟶ 288:
| 44
| 37
|-
| 21
Line 263 ⟶ 309:
| 1
|}{{clear left}}
==Programming example==
The example below searches for polydivisible numbers in [[Python (programming language)|Python]].
<
def find_polydivisible(base: int) -> list[int]:
"""Find polydivisible number."""
previous = [i for i in range(1, base)
new = []
digits =
while not previous == []:
numbers.append(previous)
for n in previous:
for j in range(0, base):
number = n * base + j
if number % digits == 0:
new.append(number)
previous = new
new = []
digits = digits + 1
return numbers
</syntaxhighlight>
==Related problems==
Polydivisible numbers represent a generalization of the following well-known<ref name="Parker">{{Citation|last=Parker|first=Matt|title=Things to Make and Do in the Fourth Dimension|chapter=Can you digit?|pages=
: ''Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.''
Line 311 ⟶ 345:
* Finding polydivisible numbers with additional restrictions on the digits - for example, the longest polydivisible number that only uses even digits is
:'''
* Finding [[palindromic number|palindromic]] polydivisible numbers - for example, the longest palindromic polydivisible number is
:'''
* A common, trivial extension of the aforementioned example is to arrange the digits 0 to 9 to make a 10 digit number in the same way, the result is 3816547290. This is a [[pandigital]] polydivisible number.
Line 326 ⟶ 360:
{{Classes of natural numbers}}
{{Divisor classes}}
[[Category:Articles with example Python (programming language) code]]
[[Category:Base-dependent integer sequences]]
[[Category:Modular arithmetic]]
|