Step function: Difference between revisions

Content deleted Content added
Definition and first consequences: In the first figure, added more information about how the function in this figure is defined.
Undid revision 1275818085 by Goodphy (talk) this redundancy does not seem clarifying
 
(4 intermediate revisions by 4 users not shown)
Line 16:
 
In this definition, the intervals <math>A_i</math> can be assumed to have the following two properties:
# The intervals are [[disjoint setsets|pairwise disjoint]]: <math>A_i \cap A_j = \emptyset</math> for <math>i \neq j</math>
# The [[union (set theory)|union]] of the intervals is the entire real line: <math>\bigcup_{i=0}^n A_i = \mathbb R.</math>
 
Line 26:
 
===Variations in the definition===
Sometimes, the intervals are required to be right-open<ref>{{Cite web|url=http://mathworld.wolfram.com/StepFunction.html|title = Step Function}}</ref> or allowed to be singleton.<ref>{{Cite web|url=http://mathonline.wikidot.com/step-functions|title = Step Functions - Mathonline}}</ref> The condition that the collection of intervals must be finite is often dropped, especially in school mathematics,<ref>{{Cite web|url=https://www.mathwords.com/s/step_function.htm|title=Mathwords: Step Function}}</ref><ref>{{Cite web | title=Archived copy | url=https://study.com/academy/lesson/step-function-definition-equation-examples.html {{Bare| URLarchive-url=https://web.archive.org/web/20150912010951/http://study.com:80/academy/lesson/step-function-definition-equation-examples.html inline| access-date=August2024-12-16 2022| archive-date=2015-09-12}}</ref><ref>{{Cite web|url=https://www.varsitytutors.com/hotmath/hotmath_help/topics/step-function|title = Step Function}}</ref> though it must still be [[Locally finite collection|locally finite]], resulting in the definition of piecewise constant functions.
 
==Examples==
Line 36:
* The [[rectangular function]], the normalized [[boxcar function]], is used to model a unit pulse.
 
=== Non-examples ===
* The [[integer part]] function is not a step function according to the definition of this article, since it has an infinite number of intervals. However, some authors<ref name=bachman_narici_beckenstein>{{Cite book | author=Bachman, Narici, Beckenstein | title=Fourier and Wavelet Analysis | publisher=Springer, New York, 2000 | isbn=0-387-98899-8 | chapter =Example 7.2.2| date=5 April 2002 }}</ref> also define step functions with an infinite number of intervals.<ref name=bachman_narici_beckenstein />
 
==Properties==
 
* The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an [[algebra over a field|algebra]] over the real numbers.
* A step function takes only a finite number of values. If the intervals <math>A_i,</math> for <math>i=0, 1, \dots, n</math> in the above definition of the step function are disjoint and their union is the real line, then <math>f(x)=\alpha_i</math> for all <math>x\in A_i.</math>
* The [[definite integral]] of a step function is a [[piecewise linear function]].
* The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum_{i=0}^n \alpha_i \ell(A_i),</math> where <math>\ell(A)</math> is the length of the interval <math>A</math>, and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | title=Lebesgue integration and measure | date= 10 May 1973| publisher=Cambridge University Press, 1973 | isbn=0-521-09751-7 |chapter= 3}}</ref>
* A [[discrete random variable]] is sometimes defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|title=Introduction to Probability|last=Bertsekas|author-link=Dimitri_BertsekasDimitri Bertsekas|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=[[John Tsitsiklis|Tsitsiklis, John N.]], Τσιτσικλής, Γιάννης Ν.|isbn=188652940X|___location=Belmont, Mass.|oclc=51441829}}</ref> In this case, it is locally a step function (globally, it may have an infinite number of steps). Usually however, any random variable with only countably many possible values is called a discrete random variable, in this case their cumulative distribution function is not necessarily locally a step function, as infinitely many intervals can accumulate in a finite region.
 
==See also==