Content deleted Content added
mNo edit summary |
Undid revision 1275818085 by Goodphy (talk) this redundancy does not seem clarifying |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 26:
===Variations in the definition===
Sometimes, the intervals are required to be right-open<ref>{{Cite web|url=http://mathworld.wolfram.com/StepFunction.html|title = Step Function}}</ref> or allowed to be singleton.<ref>{{Cite web|url=http://mathonline.wikidot.com/step-functions|title = Step Functions - Mathonline}}</ref> The condition that the collection of intervals must be finite is often dropped, especially in school mathematics,<ref>{{Cite web|url=https://www.mathwords.com/s/step_function.htm|title=Mathwords: Step Function}}</ref><ref>{{Cite web | title=Archived copy | url=https://study.com/academy/lesson/step-function-definition-equation-examples.html
==Examples==
Line 44:
* The [[definite integral]] of a step function is a [[piecewise linear function]].
* The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum_{i=0}^n \alpha_i \ell(A_i),</math> where <math>\ell(A)</math> is the length of the interval <math>A</math>, and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | title=Lebesgue integration and measure | date= 10 May 1973| publisher=Cambridge University Press, 1973 | isbn=0-521-09751-7 |chapter= 3}}</ref>
* A [[discrete random variable]] is sometimes defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|title=Introduction to Probability|last=Bertsekas|author-link=
==See also==
|