Content deleted Content added
Citation bot (talk | contribs) Add: s2cid. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 36/64 |
TheMathCat (talk | contribs) m wikilink |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 9:
An important example of a function of a quaternion variable is
:<math>f_1(q) = u q u^{-1}</math>
which [[quaternions and spatial rotation|rotates the vector part of ''q'']] by twice the angle represented by the versor ''u''.
The quaternion [[multiplicative inverse]] <math>f_2(q) = q^{-1}</math> is another fundamental function, but as with other number systems, <math>f_2(0)</math> and related problems are generally excluded due to the nature of [[dividing by zero]].
Line 61:
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>\ f(q) = q^2\ </math> from differentiation. Therefore, a direction-dependent derivative is necessary for functions of a quaternion variable.<ref>{{
Considering the increment of [[polynomial function]] of quaternionic argument shows that the increment is a linear map of increment of the argument.
A continuous
<math>\ f: \mathbb H \rightarrow \mathbb H\ </math>
is called ''differentiable on the set'' <math>\ U \subset \mathbb H\ ,</math>
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\ \mathbb H\ ,</math> and
<math>\ o:\mathbb H\rightarrow \mathbb H\ </math>
: <math>\lim_{a \rightarrow 0} \frac{\ \left|\ o(a)\ \right|\ }{ \left|\ a\ \right| } = 0\ ,</math>
and the notation <math>\ \circ h\ </math> denotes ...{{explain|date=September 2024}}
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>\ f ~.</math>
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{
Therefore, the differential of the map <math>\ f\ </math> may be expressed as follows, with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ
The number of terms in the sum will depend on the function
<math>~~ \frac{
components of derivative.
The derivative of a quaternionic function
: <math>\frac{
where the variable <math>\ t\ </math> is a real scalar.
The following equations then hold:
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{
: <math>\frac{
: <math>\frac{
: <math>\frac{
: <math>\frac{
For the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 111 ⟶ 115:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|}
Similarly, for the function
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>
|}
Line 127 ⟶ 131:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
Finally, for the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 147 ⟶ 151:
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
Line 304 ⟶ 308:
| doi = 10.1098/rsta.1903.0018
| jfm = 34.0092.01| bibcode = 1903RSPTA.201..223J
| doi-access =
}}
* {{Citation
Line 334 ⟶ 338:
| first = A.
| title = Quaternionic analysis
| journal = [[Mathematical Proceedings of the Cambridge Philosophical Society]]
| volume = 85
| issue = 2
Line 346 ⟶ 350:
}}
{{Analysis in topological vector spaces}}
[[Category:Quaternions]]▼
[[Category:Functions and mappings]]▼
[[Category:Articles containing proofs]]
▲[[Category:Functions and mappings]]
▲[[Category:Quaternions|analysis]]
|