Content deleted Content added
Aleks kleyn (talk | contribs) |
TheMathCat (talk | contribs) m wikilink |
||
(48 intermediate revisions by 25 users not shown) | |||
Line 1:
{{Short description|Function theory with quaternion variable}}
In [[mathematics]], '''quaternionic analysis''' is the study of [[function (mathematics)|functions]] with [[quaternion]]s as the [[___domain of a function|___domain]] and/or range. Such functions can be called '''functions of a quaternion variable''' just as [[Function of a real variable|functions of a real variable]] or a [[Function of a complex variable|complex variable]] are called.
As with [[complex analysis|complex]] and [[real analysis]], it is possible to study the concepts of [[analytic function|analyticity]], [[holomorphic function|holomorphy]], [[harmonic function|harmonicity]] and [[conformality]] in the context of quaternions.
==
The [[projection (linear algebra)|projections]] of a quaternion onto its scalar part or onto its vector part, as well as the modulus and [[versor]] functions, are examples that are basic to understanding quaternion structure.
An important example of a function of a quaternion variable is
:<math>f_1(q) = u q u^{-1}</math>
which [[quaternions and spatial rotation|rotates the vector part of ''q'']] by twice the angle represented by the versor ''u''.
The quaternion [[multiplicative inverse]] <math>f_2(q) = q^{-1}</math> is another fundamental function, but
[[Affine transformation]]s of quaternions have the form
Line 18 ⟶ 19:
Quaternion variable theory differs in some respects from complex variable theory. For example: The [[complex conjugate]] mapping of the complex plane is a central tool but requires the introduction of a non-arithmetic, [[Holomorphic function|non-analytic]] operation. Indeed, conjugation changes the [[orientation (mathematics)|orientation]] of plane figures, something that arithmetic functions do not change.
In contrast to the [[complex conjugate]], the quaternion conjugation can be expressed arithmetically
This equation can be proven, starting with the [[basis (linear algebra)|basis]] {1, i, j, k}:
:<math>f_4(1) = -\tfrac{1}{2}(1 - 1 - 1 - 1) = 1, \quad
f_4(i) = -\tfrac{1}{2}(i - i + i + i) = -i, \quad
f_4(j) = -j, \quad
f_4(k) = -k </math>.
Consequently, since <math>f_4</math> is [[linear
:<math>f_4(q) = f_4(w + x i + y j + z k) = w f_4(1) + x f_4(i) + y f_4(j) + z f_4(k) = w - x i - y j - z k = q^*.</math>
The success of [[complex analysis]] in providing a rich family of [[holomorphic function]]s for scientific work has engaged some workers in efforts to extend the planar theory, based on complex numbers, to a 4-space study with functions of a quaternion variable.<ref>{{harv|Fueter|1936}}</ref> These efforts were summarized in {{harvtxt|Deavours|1973}}.{{efn|{{harvtxt|Deavours|1973}} recalls a 1935 issue of ''[[Commentarii Mathematici Helvetici]]'' where an alternative theory of "regular functions" was initiated by {{harvtxt|Fueter|1936}} through the idea of [[Morera's theorem]]: quaternion function <math>F</math> is "left regular at <math>q</math>" when the integral of <math>F</math> vanishes over any sufficiently small [[hypersurface]] containing <math>q</math>. Then the analogue of [[Liouville's theorem (complex analysis)|Liouville's theorem]] holds: The only regular quaternion function with bounded norm in <math>\mathbb{E}^4</math> is a constant. One approach to construct regular functions is to use [[power series]] with real coefficients. Deavours also gives analogues for the [[Poisson integral]], the [[Cauchy integral formula]], and the presentation of [[Maxwell’s equations]] of electromagnetism with quaternion functions.}}
Though <math>\mathbb{H}</math> [[quaternion#As a union of complex planes|appears as a union of complex planes]], the following proposition shows that extending complex functions requires special care:
Then, let <math>r^*</math> represent the conjugate of <math>r</math>, so that <math>q = x - yr^*</math>. The extension to <math>\mathbb{H}</math> will be complete when it is shown that <math>f_5(q) = f_5(x - yr^*)</math>. Indeed, by hypothesis
:<math>u(x,y) = u(x,-y), \quad v(x,y) = -v(x,-y) \quad</math> one obtains
:<math>f_5(x - y r^*) = u(x,-y) + r^* v(x,-y) = u(x,y) + r v(x,y) = f_5(q).</math>
==Homographies==
In the following, colons and square brackets are used to denote [[homogeneous coordinates|homogeneous vectors]].
The [[quaternions and spatial rotation|rotation]] about axis ''r'' is a classical application of quaternions to [[space]] mapping.<ref>{{harv|Cayley|1848|loc=especially page 198}}</ref>
In terms of a [[Homography#Over a ring|homography]], the rotation is expressed
:<math>[q:1] \begin{pmatrix}u & 0\\0 & u \end{pmatrix} = [qu : u] \thicksim [u^{-1}qu : 1] ,</math>
where <math>u = \exp(\theta r) = \cos \theta + r \sin \theta</math> is a [[versor]]. If ''p'' * = −''p'', then the translation <math>q \mapsto q + p</math> is expressed by
:<math>
Rotation and translation ''xr'' along the axis of rotation is given by
:<math>
Such a mapping is called a [[screw displacement]]. In classical [[kinematics]], [[Chasles' theorem (kinematics)|Chasles' theorem]] states that any rigid body motion can be displayed as a screw displacement. Just as the representation of a [[Euclidean plane isometry]] as a rotation is a matter of complex number arithmetic, so Chasles' theorem, and the [[screw axis]] required, is a matter of quaternion arithmetic with homographies: Let ''s'' be a right versor, or square root of minus one, perpendicular to ''r'', with ''t'' = ''rs''.
Consider the axis passing through ''s'' and parallel to ''r''. Rotation about it is expressed<ref>{{harv|Hamilton
:<math>\begin{pmatrix}1 & 0 \\ -s & 1 \end{pmatrix} \begin{pmatrix}u & 0 \\ 0 & u \end{pmatrix} \begin{pmatrix}1 & 0 \\ s & 1 \end{pmatrix} = \begin{pmatrix}u & 0 \\ z & u \end{pmatrix}, </math>
where <math>z = u s - s u = \sin \theta (rs - sr) = 2 t \sin \theta .</math>
Line 59 ⟶ 58:
Any ''p'' in this half-plane lies on a ray from the origin through the circle <math>\lbrace u^{-1} z : 0 < \theta < \pi \rbrace</math> and can be written <math>p = a u^{-1} z , \ \ a > 0 .</math>
Then ''up'' = ''az'', with <math>\begin{pmatrix}u & 0 \\ az & u \end{pmatrix} </math> as the homography expressing [[conjugation (group theory)|conjugation]] of a rotation by a translation p.
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>\ f(q) = q^2\ </math> from
Considering the increment of [[polynomial function]] of quaternionic argument shows that the increment is a linear map of increment of the argument.{{Dubious|date=March 2019}} From this, a definition can be made:
A continuous function
<math>\ f: \mathbb H \rightarrow \mathbb H\ </math>
is called ''differentiable on the set'' <math>\ U \subset \mathbb H\ ,</math> if at every point <math>\ x \in U\ ,</math> an increment of the function <math>\ f\ </math> corresponding to a quaternion increment <math>\ h\ </math> of its argument, can be represented as
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\ \mathbb H\ ,</math> and
<math>\ o:\mathbb H\rightarrow \mathbb H\ </math>
: <math>\lim_{a \rightarrow 0} \frac{\ \left|\ o(a)\ \right|\ }{ \left|\ a\ \right| } = 0\ ,</math>
and the notation <math>\ \circ h\ </math> denotes ...{{explain|date=September 2024}}
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>\ f ~.</math>
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x} </math>
Therefore, the differential of the map <math>\ f\ </math> may be expressed as follows, with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ \operatorname d x = \left(\sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}\right)\circ \operatorname d x = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \left( \operatorname d x \right) \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}</math>
The number of terms in the sum will depend on the function
<math>~~ \frac{
components of derivative.
The derivative of a quaternionic function
: <math>\frac{
where the variable <math>\ t\ </math> is a real scalar.
The following equations then hold:
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{
: <math>\frac{\operatorname d\left( f(x)\ g(x)\right)}{\operatorname d x} = \frac{\operatorname d f(x) }{\operatorname d x}\ g(x) + f(x)\ \frac{\operatorname d g(x)}{\operatorname d x}</math>
: <math>\frac{\operatorname d \left( f(x)\ g(x)\right)}{\operatorname d x} \circ h = \left(\frac{\operatorname d f(x)}{\operatorname d x}\circ h\right )\ g(x) + f(x) \left(\frac{\operatorname d g(x)}{\operatorname d x}\circ h\right)</math>
: <math>\frac{\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x} = a\ \frac{\operatorname d f(x)}{\operatorname d x}\ b</math>
: <math>\frac{\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x}\circ h = a \left(\frac{\operatorname d f(x)}{\operatorname d x}\circ h\right) b</math>
For the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 160 ⟶ 115:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|}
Similarly, for the function
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>
|}
Line 176 ⟶ 131:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
Finally, for the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 196 ⟶ 151:
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
==See also==
* [[Cayley transform]]
* [[Quaternionic manifold]]
==Notes==
{{notelist}}
==Citations==
{{Reflist|2}}
==References==
* {{Citation
| last = Arnold
| first = Vladimir
| author-link = Vladimir Arnold
| translator1-last = Porteous
| translator1-first = Ian R.
| translator-link1 = Ian R. Porteous
| title = The geometry of spherical curves and the algebra of quaternions
| journal = Russian Mathematical Surveys
| volume = 50
| issue = 1
| pages = 1–68
| year = 1995
| doi = 10.1070/RM1995v050n01ABEH001662
| zbl = 0848.58005| s2cid = 250897899
}}
* {{Citation
| last = Cayley
| first = Arthur
| author-link = Arthur Cayley
| title = On the application of quaternions to the theory of rotation
| journal = [[London and Edinburgh Philosophical Magazine]] |series=Series 3
| volume = 33
| issue = 221
| pages = 196–200
| year = 1848
| doi = 10.1080/14786444808645844| url = https://zenodo.org/record/1782007
}}
*{{Citation
| last = Deavours
| first = C.A.
| title = The quaternion calculus
| journal = [[American Mathematical Monthly]]
| publisher = Mathematical Association of America
| ___location = Washington, DC
| issn = 0002-9890
| volume = 80
| issue = 9
| pages = 995–1008
| year = 1973
| jstor = 2318774
| doi = 10.2307/2318774
| zbl = 0282.30040}}
* {{Citation
| last = Du Val
| first = Patrick
| author-link = Patrick du Val
| title = Homographies, Quaternions and Rotations
| place = Oxford
| publisher = Clarendon Press
| series = Oxford Mathematical Monographs
| year = 1964
| mr = 0169108
| zbl = 0128.15403}}
* {{Citation
| last = Fueter
| first = Rudolf
| author-link = Rudolf Fueter
| title = Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen
| journal = [[Commentarii Mathematici Helvetici]]
| volume = 8
| pages = 371–378
| year = 1936
| language = de
| zbl = 0014.16702| doi = 10.1007/BF01199562
| s2cid = 121227604
}}
* {{Citation
| last1 = Gentili
| first1 = Graziano
| last2 = Stoppato
| first2 = Caterina
| last3 = Struppa
| first3 = Daniele C.
| title = Regular Functions of a Quaternionic Variable
| place = Berlin
| publisher = Springer
| year = 2013
| doi = 10.1007/978-3-642-33871-7
| isbn = 978-3-642-33870-0
| zbl = 1269.30001| s2cid = 118710284
}}
* {{Citation
| last = Gormley
| first = P.G.
| title = Stereographic projection and the linear fractional group of transformations of quaternions
| journal = [[Proceedings of the Royal Irish Academy, Section A]]
| volume = 51
| pages = 67–85
| year = 1947
| jstor = 20488472
}}
* {{Citation
| last1 = Gürlebeck
| first1 = Klaus
| last2 = Sprößig
| first2 = Wolfgang
| title = Quaternionic analysis and elliptic boundary value problems
| place = Basel
| publisher = Birkhäuser
| year = 1990
| isbn = 978-3-7643-2382-0
| zbl = 0850.35001}}
* {{citation | last =John C.Holladay| title =The Stone–Weierstrass theorem for quaternions| journal = Proc. Amer. Math. Soc. | volume =8| year =1957|url =http://www.ams.org/journals/proc/1957-008-04/S0002-9939-1957-0087047-7/S0002-9939-1957-0087047-7.pdf| doi=10.1090/S0002-9939-1957-0087047-7| pages=656| doi-access =free}}.
* {{Citation
| last = Hamilton
| first = William Rowan
| author-link = William Rowan Hamilton
| title = Lectures on Quaternions
| place = Dublin
| publisher = Hodges and Smith
| year = 1853
| ol = 23416635M
}}
* {{Citation
| last = Hamilton
| first = William Rowan
| author-link = William Rowan Hamilton
| editor-last = Hamilton
| editor-first = William Edwin
| editor-link = William Edwin Hamilton
| title = Elements of Quaternions
| place = London
| publisher = Longmans, Green, & Company
| year = 1866
| url = https://books.google.com/books?id=b2stAAAAYAAJ
| zbl = 1204.01046}}
* {{Citation
| last = Joly
| first = Charles Jasper
| author-link = Charles Jasper Joly
| title = Quaternions and projective geometry
| journal = [[Philosophical Transactions of the Royal Society of London]]
| volume = 201
| issue = 331–345
| pages = 223–327
| year = 1903
| jstor = 90902
| doi = 10.1098/rsta.1903.0018
| jfm = 34.0092.01| bibcode = 1903RSPTA.201..223J
| doi-access =
}}
* {{Citation
| last = Laisant
| first = Charles-Ange
| author-link = Charles-Ange Laisant
| title = Introduction à la Méthode des Quaternions
| place = Paris
| publisher = Gauthier-Villars
| year = 1881
| language = fr
| url = https://archive.org/details/introductionlam01laisgoog
| jfm = 13.0524.02}}
* {{Citation
| last = Porter
| first = R. Michael
| title = Möbius invariant quaternion geometry
| journal = Conformal Geometry and Dynamics
| volume = 2
| issue = 6
| pages = 89–196
| year = 1998
| url = https://www.ams.org/journals/ecgd/1998-02-06/S1088-4173-98-00032-0/S1088-4173-98-00032-0.pdf
| doi = 10.1090/S1088-4173-98-00032-0
| zbl = 0910.53005| doi-access = free
}}
* {{Citation
| last = Sudbery
| first = A.
| title = Quaternionic analysis
| journal = [[Mathematical Proceedings of the Cambridge Philosophical Society]]
| volume = 85
| issue = 2
| pages = 199–225
| year = 1979
| doi = 10.1017/S0305004100055638
| zbl = 0399.30038| bibcode = 1979MPCPS..85..199S
| hdl = 10338.dmlcz/101933
| s2cid = 7606387
| hdl-access = free
}}
{{Analysis in topological vector spaces}}
[[Category:Articles containing proofs]]
[[Category:Functions and mappings]]
[[Category:Quaternions|analysis]]
|