Content deleted Content added
TheMathCat (talk | contribs) m wikilink |
|||
(30 intermediate revisions by 20 users not shown) | |||
Line 1:
{{Short description|Function theory with quaternion variable}}
In [[mathematics]], '''quaternionic analysis''' is the study of [[function (mathematics)|functions]] with [[quaternion]]s as the [[___domain of a function|___domain]] and/or range. Such functions can be called '''functions of a quaternion variable''' just as [[Function of a real variable|functions of a real variable]] or a [[Function of a complex variable|complex variable]] are called.
As with [[complex analysis|complex]] and [[real analysis]], it is possible to study the concepts of [[analytic function|analyticity]], [[holomorphic function|holomorphy]], [[harmonic function|harmonicity]] and [[conformality]] in the context of quaternions. Unlike the [[complex
==Properties==
Line 8 ⟶ 9:
An important example of a function of a quaternion variable is
:<math>f_1(q) = u q u^{-1}</math>
which [[quaternions and spatial rotation|rotates the vector part of ''q'']] by twice the angle represented by the versor ''u''.
The quaternion [[multiplicative inverse]] <math>f_2(q) = q^{-1}</math> is another fundamental function, but as with other number systems, <math>f_2(0)</math> and related problems are generally
[[Affine transformation]]s of quaternions have the form
Line 25 ⟶ 26:
f_4(j) = -j, \quad
f_4(k) = -k </math>.
Consequently, since <math>f_4</math> is [[linear
:<math>f_4(q) = f_4(w + x i + y j + z k) = w f_4(1) + x f_4(i) + y f_4(j) + z f_4(k) = w - x i - y j - z k = q^*.</math>
The success of [[complex analysis]] in providing a rich family of [[holomorphic function]]s for scientific work has engaged some workers in efforts to extend the planar theory, based on complex numbers, to a 4-space study with functions of a quaternion variable.<ref>{{harv|Fueter|1936}}</ref> These efforts were summarized in {{harvtxt|Deavours|1973}}.{{efn|{{harvtxt|Deavours|1973}} recalls a 1935 issue of ''[[Commentarii Mathematici Helvetici]]'' where an alternative theory of "regular functions" was initiated by {{harvtxt|Fueter|1936}} through the idea of [[Morera's theorem]]: quaternion function <math>F</math> is "left regular at <math>q</math>" when the integral of <math>F</math> vanishes over any sufficiently small [[hypersurface]] containing <math>q</math>. Then the analogue of [[Liouville's theorem (complex analysis)|Liouville's theorem]] holds: The only regular quaternion function with bounded norm in <math>\mathbb{E}^4</math> is a constant. One approach to construct regular functions is to use [[power series]] with real coefficients. Deavours also gives analogues for the [[Poisson integral]], the [[Cauchy integral formula]], and the presentation of [[Maxwell’s equations]] of electromagnetism with quaternion functions.}}
Though <math>\mathbb{H}</math> [[quaternion#
Let <math>f_5(z) = u(x,y) + i v(x,y)</math> be a function of a complex variable, <math>z = x + i y</math>. Suppose also that <math>u</math> is an [[even function]] of <math>y</math> and that <math>v</math> is an [[odd function]] of <math>y</math>. Then <math>f_5(q) = u(x,y) + rv(x,y)</math> is an extension of <math>f_5</math> to a quaternion variable <math>q = x + yr</math> where <math>r^2 = -1</math> and <math>r \in \mathbb{H}</math>.
Line 38 ⟶ 39:
==Homographies==
In the following, colons and square brackets are used to denote [[homogeneous coordinates|homogeneous vectors]].
The [[quaternions and spatial rotation|rotation]] about axis ''r'' is a classical application of quaternions to [[space]] mapping.<ref>{{harv|Cayley|1848|loc=especially page 198}}</ref>
In terms of a [[Homography#Over a ring|homography]], the rotation is expressed
:<math>
where <math>u = \exp(\theta r) = \cos \theta + r \sin \theta</math> is a [[versor]]. If ''p'' * = −''p'', then the translation <math>q \mapsto q + p</math> is expressed by
:<math>
Rotation and translation ''xr'' along the axis of rotation is given by
:<math>
Such a mapping is called a [[screw displacement]]. In classical [[kinematics]], [[Chasles' theorem (kinematics)|Chasles' theorem]] states that any rigid body motion can be displayed as a screw displacement. Just as the representation of a [[Euclidean plane isometry]] as a rotation is a matter of complex number arithmetic, so Chasles' theorem, and the [[screw axis]] required, is a matter of quaternion arithmetic with homographies: Let ''s'' be a right versor, or square root of minus one, perpendicular to ''r'', with ''t'' = ''rs''.
Line 55 ⟶ 58:
Any ''p'' in this half-plane lies on a ray from the origin through the circle <math>\lbrace u^{-1} z : 0 < \theta < \pi \rbrace</math> and can be written <math>p = a u^{-1} z , \ \ a > 0 .</math>
Then ''up'' = ''az'', with <math>\begin{pmatrix}u & 0 \\ az & u \end{pmatrix} </math> as the homography expressing [[conjugation (group theory)|conjugation]] of a rotation by a translation p.
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>\ f(q) = q^2\ </math> from differentiation. Therefore, a direction-dependent derivative is necessary for functions of a quaternion variable.<ref>{{
Considering
A continuous function
<math>\ f: \mathbb H \rightarrow \mathbb H\ </math>
is called ''differentiable on the set'' <math>\ U \subset \mathbb H\ ,</math> if at every point <math>\ x \in U\ ,</math> an increment of the function <math>\ f\ </math> corresponding to a quaternion increment <math>\ h\ </math> of its argument, can be represented as
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\ \mathbb H\ ,</math> and
<math>\ o:\mathbb H\rightarrow \mathbb H\ </math>
: <math>\lim_{a \rightarrow 0} \frac{\ \left|\ o(a)\ \right|\ }{ \left|\ a\ \right| } = 0\ ,</math>
and the notation <math>\ \circ h\ </math> denotes ...{{explain|date=September 2024}}
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>\ f ~.</math>
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x} </math>
Therefore, the differential of the map <math>\ f\ </math> may be expressed as follows, with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ \operatorname d x = \left(\sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}\right)\circ \operatorname d x = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \left( \operatorname d x \right) \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}</math>
The number of terms in the sum will depend on the function
<math>~~ \frac{
components of derivative.
The derivative of a quaternionic function
: <math>\frac{
where the variable <math>\ t\ </math> is a real scalar.
The following equations then hold:
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{
: <math>\frac{\operatorname d\left( f(x)\ g(x)\right)}{\operatorname d x} = \frac{\operatorname d f(x) }{\operatorname d x}\ g(x) + f(x)\ \frac{\operatorname d g(x)}{\operatorname d x}</math>
: <math>\frac{\operatorname d \left( f(x)\ g(x)\right)}{\operatorname d x} \circ h = \left(\frac{\operatorname d f(x)}{\operatorname d x}\circ h\right )\ g(x) + f(x) \left(\frac{\operatorname d g(x)}{\operatorname d x}\circ h\right)</math>
: <math>\frac{\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x} = a\ \frac{\operatorname d f(x)}{\operatorname d x}\ b</math>
: <math>\frac{\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x}\circ h = a \left(\frac{\operatorname d f(x)}{\operatorname d x}\circ h\right) b</math>
For the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 153 ⟶ 115:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|}
Similarly, for the function
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>
|}
Line 169 ⟶ 131:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
Finally, for the function
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math>
|}
Line 189 ⟶ 151:
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
==See also==
* [[Cayley transform]]
* [[Quaternionic manifold]]
==Notes==
Line 218 ⟶ 181:
| pages = 1–68
| year = 1995
| doi = 10.1070/RM1995v050n01ABEH001662
| zbl = 0848.58005| s2cid = 250897899
}}
* {{Citation
| last = Cayley
Line 247 ⟶ 210:
| jstor = 2318774
| doi = 10.2307/2318774
| zbl = 0282.30040}}
* {{Citation
Line 269 ⟶ 231:
| pages = 371–378
| year = 1936
| language =
| zbl = 0014.16702| doi = 10.1007/BF01199562
| s2cid = 121227604
}}
* {{Citation
|
|
| last2 = Stoppato
| first2 =
| last3 = Struppa
| first3 = Daniele C.
Line 286 ⟶ 248:
| doi = 10.1007/978-3-642-33871-7
| isbn = 978-3-642-33870-0
| zbl = 1269.30001| s2cid = 118710284
}}
* {{Citation
| last = Gormley
Line 297 ⟶ 259:
| year = 1947
| jstor = 20488472
* {{Citation
|
|
| last2 = Sprößig
| first2 = Wolfgang
Line 309 ⟶ 270:
| year = 1990
| isbn = 978-3-7643-2382-0
| zbl = 0850.35001}}
* {{citation | last =John C.Holladay| title =The Stone–Weierstrass theorem for quaternions| journal = Proc. Amer. Math. Soc. | volume =8| year =1957|url =http://www.ams.org/journals/proc/1957-008-04/S0002-9939-1957-0087047-7/S0002-9939-1957-0087047-7.pdf| doi=10.1090/S0002-9939-1957-0087047-7| pages=656| doi-access =free}}.
* {{Citation
| last = Hamilton
Line 319 ⟶ 280:
| publisher = Hodges and Smith
| year = 1853
| ol = 23416635M
}}
* {{Citation
| last = Hamilton
Line 331 ⟶ 293:
| publisher = Longmans, Green, & Company
| year = 1866
| url = https://books.google.com/books
| zbl = 1204.01046}}
* {{Citation
Line 346 ⟶ 308:
| doi = 10.1098/rsta.1903.0018
| jfm = 34.0092.01| bibcode = 1903RSPTA.201..223J
| doi-access =
}}
* {{Citation
Line 355 ⟶ 318:
| publisher = Gauthier-Villars
| year = 1881
| language =
| url = https://archive.org/details/introductionlam01laisgoog
| jfm = 13.0524.02}}
Line 367 ⟶ 330:
| pages = 89–196
| year = 1998
| url =
| doi = 10.1090/S1088-4173-98-00032-0
| zbl = 0910.53005| doi-access = free
}}
* {{Citation
| last = Sudbery
| first = A.
| title = Quaternionic analysis
| journal = [[Mathematical Proceedings of the Cambridge Philosophical Society]]
| volume = 85
| issue = 2
Line 381 ⟶ 344:
| year = 1979
| doi = 10.1017/S0305004100055638
| zbl = 0399.30038| bibcode = 1979MPCPS..85..199S
| hdl = 10338.dmlcz/101933
| s2cid = 7606387
| hdl-access = free
}}
{{Analysis in topological vector spaces}}
[[Category:Articles containing proofs]]
[[Category:Functions and mappings]]
[[Category:Quaternions|analysis]]
|