Content deleted Content added
KMaster888 (talk | contribs) add link |
Citation bot (talk | contribs) Add: doi-access, url. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 18/69 |
||
(One intermediate revision by one other user not shown) | |||
Line 29:
* in MEMS, DRIE is used for anything from a few micrometers to 0.5 mm.
* in irregular chip dicing, DRIE is used with a novel hybrid soft/hard mask to achieve sub-millimeter etching to dice silicon dies into lego-like pieces with irregular shapes.<ref>{{cite journal | last1= Ghoneim | first1= Mohamed | last2 = Hussain | first2= Muhammad | title = Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics| journal= Small | date= 1 February 2017 | doi=10.1002/smll.201601801 | pmid= 28145623 | volume=13 | issue= 16 | page=1601801| hdl= 10754/622865 | url= https://repository.kaust.edu.sa/bitstream/10754/622865/1/smll.201601801_R2.pdf | hdl-access= free }}</ref><ref>{{cite news | last= Mendis | first= Lakshini | title= Lego-like Electronics | newspaper= Nature Middle East | date= 14 February 2017 | doi= 10.1038/nmiddleeast.2017.34 }}</ref><ref>{{cite news | last= Berger | first= Michael | title=Lego like silicon electronics fabricated with hybrid etching masks | newspaper= Nanowerk | date= 6 February 2017 | url= http://www.nanowerk.com/spotlight/spotid=45763.php}}</ref>
* in flexible electronics, DRIE is used to make traditional monolithic CMOS devices flexible by reducing the thickness of silicon substrates to few to tens of micrometers.<ref>{{ cite journal | last1= Ghoneim | first1= Mohamed | first2=Nasir | last2=Alfaraj | first3=Galo | last3=Torres-Sevilla | first4=Hossain | last4=Fahad | first5=Muhammad | last5=Hussain | title=Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS | journal=IEEE Transactions on Electron Devices | volume= 63 | issue= 7 | pages= 2657–2664 | date= July 2016 | doi=10.1109/ted.2016.2561239| hdl= 10754/610712 | bibcode= 2016ITED...63.2657G | s2cid= 26592108 | url= https://figshare.com/articles/journal_contribution/5048395 | hdl-access=free }}</ref><ref>{{ cite journal | first1= Mohamed T. | last1= Ghoneim | first2= Muhammad M. | last2= Hussain | title=Review on physically flexible nonvolatile memory for internet of everything electronics | journal= Electronics | volume= 4 | issue= 3 | pages= 424–479 | date=23 July 2015 | arxiv= 1606.08404 | doi= 10.3390/electronics4030424 | s2cid= 666307 | doi-access= free }}</ref><ref>{{cite journal | first1= Mohamed T. | last1= Ghoneim | first2= Muhammad M. | last2= Hussain | title=Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric | journal=Applied Physics Letters | date=3 August 2015 | doi=10.1063/1.4927913 | volume=107 | issue= 5 | page=052904| hdl= 10754/565819 | url=https://repository.kaust.edu.sa/bitstream/10754/565819/1/1.4927913.pdf | bibcode= 2015ApPhL.107e2904G | hdl-access=free }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim | first2=Jhonathan P. | last2=Rojas | first3=Chadwin D. | last3=Young | first4=Gennadi | last4=Bersuker | first5=Muhammad M. | last5=Hussain | title=Electrical Analysis of High Dielectric Constant Insulator and Metal Gate Metal Oxide Semiconductor Capacitors on Flexible Bulk Mono-Crystalline Silicon | journal= IEEE Transactions on Reliability | volume=64 | issue=2 | pages=579–585 | date=26 November 2014 | doi=10.1109/TR.2014.2371054 | s2cid=11483790 | url=https://figshare.com/articles/journal_contribution/5048398 }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim | first2=Mohammed A. | last2=Zidan | first3=Mohammed Y. | last3=Alnassar | first4=Amir N. | last4=Hanna | first5=Jurgen | last5= Kosel | first6=Khaled N. | last6=Salama | first7=Muhammad | last7=Hussain | title=Flexible Electronics: Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications | journal=Advanced Electronic Materials | date=15 June 2015 | doi=10.1002/aelm.201500045 | volume=1 | issue=6 | page=1500045| doi-access=free | s2cid=110038210 | url=https://figshare.com/articles/journal_contribution/5048353 }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim |first2=Arwa | last2=Kutbee | first3=Farzan | last3=Ghodsi | first4=G. |last4=Bersuker | first5=Muhammad M. | last5=Hussain | title=Mechanical anomaly impact on metal–oxide–semiconductor capacitors on flexible silicon fabric | journal= Applied Physics Letters | date=9 June 2014 | doi=10.1063/1.4882647 | volume=104 | issue=23 | page=234104| hdl=10754/552155 | url=http://repository.kaust.edu.sa/kaust/bitstream/10754/552155/1/1.4882647.pdf | bibcode=2014ApPhL.104w4104G | s2cid=36842010 | hdl-access=free }}</ref>
DRIE is distinguished from RIE
DRIE of glass requires high plasma power, which makes it difficult to find suitable mask materials for truly deep etching. Polysilicon and nickel are used for 10–50 μm etched depths. In DRIE of polymers, Bosch process with alternating steps of SF<sub>6</sub> etching and C<sub>4</sub>F<sub>8</sub> passivation take place. Metal masks can be used, however they are expensive to use since several additional photo and deposition steps are always required. Metal masks are not necessary however on various substrates (Si [up to 800 μm], InP [up to 40 μm] or glass [up to 12 μm]) if using chemically amplified negative resists.
|