Content deleted Content added
Adding short description: "Concept in geometry" |
|||
(30 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Concept in geometry}}
{{Uniform hyperbolic tiles db|Reg hyperbolic tiling stat table|Ui3_2}}
[[File:H3 33inf UHS plane at infinity.png|thumb|The [[Infinite-order tetrahedral honeycomb|{3,3,∞}]] honeycomb has {3,∞} vertex figures.]]
In [[geometry]], the '''infinite-order
== Symmetry ==
A lower symmetry form has alternating colors, and represented by cyclic symbol {(3,∞,3)}, {{CDD|node_1|split1|branch|labelinfin}}. The tiling also represents the fundamental domains of the [[Iii symmetry|*∞∞∞ symmetry]], which can be seen with 3 colors of lines representing 3 mirrors of the construction.
{| class=wikitable width=450
|- align=center
|[[File:Infinite-order triangular tiling.svg|150px]]<BR>Alternated colored tiling
|[[File:Iii symmetry mirrors.png|150px]]<BR> *∞∞∞ symmetry
|[[File:Apolleangasket symmetry.png|150px]]<BR>[[Apollonian gasket]] with *∞∞∞ symmetry
|}
==Related polyhedra and tiling==
This tiling is topologically related as {{Triangular regular tiling}}
{{Order i-3 tiling table}}
{{Order_i-3-3_tiling_table}}
===
A nonregular infinite-order
▲A nonregular infinite-order trianglar tiling can be generated by a [[Recursion (computer science)|recursive]] process from a central triangle shown here:
:[[File:Ideal-triangle hyperbolic tiling.svg|240px]]
==See also==
{{Commons category|Infinite-order triangular tiling}}
*[[Infinite-order tetrahedral honeycomb]]
*[[List of regular polytopes]]
*[[List of uniform planar tilings]]
Line 22 ⟶ 33:
==References==
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-
▲* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
* {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
==
*{{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
*{{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk
{{Tessellation}}
[[Category:
[[Category:Infinite-order tilings]]
[[Category:Isogonal tilings]]
[[Category:Isohedral tilings]]
[[Category:Regular tilings]]
[[Category:Triangular tilings]]
|