Computer graphics (computer science): Difference between revisions

Content deleted Content added
Computers graphics design -> computer graphics design
Tags: Mobile edit Mobile web edit
 
(26 intermediate revisions by 22 users not shown)
Line 1:
{{short description|Sub-field of computer science}}[[File:utah teapot simple 2.png|thumb|A modern rendering of the Utah teapot, an iconic model in 3D computer graphics created by Martin Newell in 1975.]]
{{about|the scientific discipline of computer graphics|a broader overview|Computer graphics|other uses|Computer graphics (disambiguation)}}
 
'''Computer graphics''' is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.
[[File:utah teapot simple 2.png|thumb|A modern rendering of the [[Utah teapot]], an iconic model in 3D computer graphics created by [[Martin Newell (computer scientist)|Martin Newell]] in 1975]]
 
'''Computer graphics''' is a sub-field of [[computer science]] which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of [[3D computer graphics|three-dimensional computer graphics]], it also encompasses [[2D computer graphics|two-dimensional graphics]] and [[image processing]]. The individuals who serve as professional designers for computers graphics are known as "Graphics Programmers", who often are computer programmers with skills in computer graphics design. <ref>{{cite web |url = https://washingtonindependent.com/computer-graphics-programming/ |title = Aspiring A Career In Computer Graphics Programming? Know The Basics Now |website = Washington Independent |access-date=February 12, 2022 }}</ref>
 
== Overview ==
anestheticComputer graphics studies manipulation of visual and geometric information using computational techniques. It focuses on the ''mathematical'' and ''computational'' foundations of image generation and processing rather than purely [[aesthetic]] issues. Computer graphics is often differentiated from the field of [[visualization (graphic)|visualization]], although the two fields have many similarities.
Computer graphics studies the
anesthetic manipulation of visual and geometric information using computational techniques. It focuses on the ''mathematical'' and ''computational'' foundations of image generation and processing rather than purely [[aesthetic]] issues. Computer graphics is often differentiated from the field of [[visualization (graphic)|visualization]], although the two fields have many similarities.
 
Connected studies include:
Line 29 ⟶ 25:
{{See also|History of computer animation|Computer graphics#History}}
 
There are several international conferences and journals where the most significant results in computer graphics are published. Among them are the [[SIGGRAPH]] and [[Eurographics]] conferences and the [[Association for Computing Machinery]] (ACM) Transactions on Graphics journal. The joint Eurographics and [[ACM SIGGRAPH]] symposium series features the major venues for the more specialized sub-fields: Symposium on Geometry Processing,<ref>{{cite web |url = http://www.geometryprocessing.org |title = geometryprocessing.org |website = geometryprocessing.org |access-date=2014-05-01 }}</ref> Symposium on Rendering, Symposium on Computer Animation,<ref>[http://www.eg.org/events ] {{webarchive |url = https://web.archive.org/web/20070314004027/http://www.eg.org/events |date = March 14, 2007 }}</ref> and High Performance Graphics.<ref>{{cite web |url = http://www.highperformancegraphics.org |title = High Performance Graphics |website = highperformancegraphics.org }}</ref>
 
As in the rest of computer science, conference publications in computer graphics are generally more significant than journal publications (and subsequently have lower acceptance rates).<ref name="cra memo">{{cite web |url = http://www.cra.org/reports/tenure_review.html |title=Best Practices Memo |website = Cra.org |access-date=2014-05-01 |archive-url = https://web.archive.org/web/20140502002308/http://www.cra.org/reports/tenure_review.html |archive-date=2014-05-02 |url-status=dead }}</ref><ref name="ernst note">{{cite web |url = http://people.csail.mit.edu/mernst/advice/conferences-vs-journals.html |title=Choosing a venue: conference or journal? |website = People.csail.mit.edu |access-date=2014-05-01}}</ref><ref name="graphics acceptance rates">{{cite web |url = http://vrlab.epfl.ch/~ulicny/statistics/ |title = Graphics/vision publications acceptance rates statistics |website = vrlab.epfl.ch |access-date=2014-05-01 }}</ref><ref>An extensive history of computer graphics can be found at [http://accad.osu.edu/~waynec/history/lessons.html this page] {{webarchive |url = https://web.archive.org/web/20070405172134/http://accad.osu.edu/~waynec/history/lessons.html |date=April 5, 2007 }}.</ref>
Line 36 ⟶ 32:
A broad classification of major subfields in computer graphics might be:
# [[Geometry]]: ways to represent and process surfaces
# [[Computer animation|Animation]]: ways to represent and manipulate motion
# [[Rendering (computer graphics)|Rendering]]: [[algorithm]]s to reproduce light transport
# [[Digital imaging|Imaging]]: image acquisition or image editing
Line 43 ⟶ 39:
[[File:Stanford bunny qem.png|thumb|Successive approximations of a surface computed using quadric error metrics]]
 
The subfield of geometry studies the representation of three-dimensional objects in a discrete digital setting. Because the appearance of an object depends largely on its exterior, [[boundary representation]]s are most commonly used. Two dimensional [[Surface (topology)|surface]]s are a good representation for most objects, though they may be non-[[manifold]]. Since surfaces are not finite, discrete digital approximations are used. [[polygon mesh|Polygonal meshes]] (and to a lesser extent [[subdivision surfaces]]) are by far the most common representation, although point-based representations have become more popular recently (see for instance the Symposium on Point-Based Graphics).<ref>{{cite web |url = http://graphics.ethz.ch/events/pbg/07/ |title=Point Based Graphics 2007 - PBG07 |website = Graphics.ethz.ch |access-date=2014-05-01}}</ref> These representations are ''Lagrangian,'' meaning the spatial locations of the samples are independent. Recently, ''Eulerian'' surface descriptions (i.e., where spatial samples are fixed) such as [[level set]]s have been developed into a useful representation for deforming surfaces which undergo many topological changes (with [[fluids]] being the most notable example).<ref name="stanford fedkiw">{{cite web |url = http://graphics.stanford.edu/~fedkiw/ |title = Ron Fedkiw |website = graphics.stanford.edu |access-date=2014-05-01 }}</ref>
 
Geometry subfields include:
* [[Implicit surface]] modeling – an older subfield which examines the use of algebraic surfaces, [[constructive solid geometry]], etc., for surface representation.
* Digital geometry processing – [[3d scanning|surface reconstruction]], simplification, fairing, mesh repair, [[mesh parameterization|parameterization]], remeshing, [[mesh generation]], surface compression, and surface editing all fall under this heading.<ref name="caltech multires dgp">[http://www.multires.caltech.edu/pubs/DGPCourse/ ] {{webarchive |url = https://web.archive.org/web/20070214021951/http://www.multires.caltech.edu/pubs/DGPCourse/ |date=February 14, 2007 }}</ref><ref name="uiuc graphics dgp">[http://graphics.cs.uiuc.edu/~garland/class/geometry/ CS 598: Digital Geometry Processing (Fall 2004)<!-- Bot generated title -->] {{webarchive|url=https://archive.today/20041025104252/http://graphics.cs.uiuc.edu/~garland/class/geometry/ |date=2004-10-25 }}</ref><ref name="ubc sheffa dgp">{{cite web|url=http://www.cs.ubc.ca/~sheffa/dgp/ |title=Digital Geometry Processing |website = cs.ubc.ca |access-date=2014-05-01}}</ref>
* Discrete differential geometry – a nascent field which defines geometric quantities for the discrete surfaces used in computer graphics.<ref name="columbia ddg">{{cite web |url = http://ddg.cs.columbia.edu/ |title=Discrete Differential Geometry |website = ddg.cs.columbia.edu |access-date=2014-05-01}}</ref>
* Point-based graphics – a recent field which focuses on points as the fundamental representation of surfaces.
Line 54 ⟶ 50:
 
=== Animation ===
The subfield of animation studies descriptions for surfaces (and other phenomena) that move or deform over time. Historically, most work in this field has focused on parametric and data-driven models, but recently [[physical simulation]] has become more popular as computers have become more powerful computationally.
 
Animation subfields include:
* [[Motion capture|Performance capture]]
* Character animation
* Physical simulation (e.g. [[cloth modeling]], animation of [[fluid dynamics]], etc.)
 
=== Rendering ===
{{Main articles|Rendering (computer graphics)}}
[[File:Cornellbox pathtracing irradiancecaching.png|thumb|Indirect diffuse scattering simulated using [[path tracing]] and [[irradiance]] [[Cache (computing)|caching]].]]
 
Rendering generates images from a model. Rendering may simulate [[light transport theory|light transport]] to create realistic images or it may create images that have a particular artistic style in [[non-photorealistic rendering]]. The two basic operations in realistic rendering are transport (how much light passes from one place to another) and scattering (how surfaces interact with light). See [[Rendering (computer graphics)]] for more information.
 
Rendering subfields include:
* [[light transport theory|Transport]] describes how illumination in a scene gets from one place to another. [[visibility (geometry)|Visibility]] is a major component of light transport.
* Scattering: Models of ''[[scattering]]'' (how light interacts with the surface ''at a given point'') and ''[[shading]]'' (how material properties vary across the surface) are used to describe the appearance of a surface. In graphics these problems are often studied within the context of rendering since they can substantially affect the design of [[rendering algorithm]]s. Descriptions of scattering are usually given in terms of a [[bidirectional scattering distribution function]] (BSDF). The latter issue addresses how different types of scattering are distributed across the surface (i.e., which scattering function applies where). Descriptions of this kind are typically expressed with a program called a [[shader]]. (Note that thereThere is some confusion since the word "shader" is sometimes used for programs that describe local ''geometric'' variation.)
* [[Non-photorealistic rendering]]
* [[Physically based rendering]] – concerned with generating images according to the laws of [[geometric optics]]
Line 82 ⟶ 79:
* [[Jim Blinn]]
* [[Jack E. Bresenham]]
* [[Loren Carpenter]]
* [[Edwin Catmull]]
* [[James H. Clark]]
Line 88 ⟶ 85:
* [[Franklin C. Crow]]
* [[Paul Debevec]]
* [[David C. Evans (computer scientist)|David C. Evans]]
* [[Ronald Fedkiw|Ron Fedkiw]]
* [[Steven K. Feiner]]
Line 163 ⟶ 160:
* [[Wings 3D]]
* [[ZBrush]]
* [[Sculptris]]
* [[SolidWorks]]
* [[Rhino3D]]
* [[SketchUp]]
* [[Houdini (software)|Houdini]]
* [[3ds Max]]
* [[Cinema 4D]]
Line 177 ⟶ 173:
* [[Blackmagic Fusion]]
* [[Adobe After Effects]]
* [[Natron (software)|Natron]]
 
'''Rendering'''
Line 193 ⟶ 189:
* [[Scribus]]
* [[Silo (software)|Silo]]
* [[Hexagon (software)|Hexagon]]
* [[LightWave 3D|Lightwave]]
 
== See also ==
Line 223 ⟶ 219:
{{Commons category|Computer graphics}}
* [https://web.archive.org/web/20070405172134/http://accad.osu.edu/~waynec/history/lessons.html A Critical History of Computer Graphics and Animation]
* {{usurped|1=[https://web.archive.org/web/20070302154206/http://hem.passagen.se/des/hocg/hocg_1960.htm ''History of Computer Graphics'' series of articles]}}
 
=== Industry ===