Thread automaton: Difference between revisions

Content deleted Content added
fixed broken open-access url
m Formal definition: {{angbr}} {{mset}}
 
(16 intermediate revisions by 8 users not shown)
Line 1:
In [[automata theory]], athe '''thread automaton''' (plural: automata) is aan extended type of [[finite-state machine|finite-state automatonautomata]] that canrecognizes makea use[[mildly ofcontext-sensitive alanguage threadclass]] above the [[tree-adjoining grammar|tree-adjoining languages]].<ref name="eric"> {{cite journalbook | last = Villemonte de la Clergerie | first = Éric | year = 2002 | titlechapter = Parsing mildly context-sensitive languages with thread automata | journalyear = COLING2002 '02| title = Proceedings of the 19th international conference on Computational linguistics - | volume = 1 | issue = 3 | pages = 1–7 | issn = | chapter-url = http://delivery.acm.org/10.1145/1080000/1072256/p28-villemonte_de_la_clergerie.pdf?acc=OPEN |url=http://dl.acm.org/ft_gateway.cfm?id=1072256&ftid=256327&dwn=1&CFID=421201372&CFTOKEN=60649649 |access-date= 2016-10-15 |doi = 10.3115/1072228.1072256 | doi-access = free }} </ref> Thread automata are capable of recognizing a [[mildly context-sensitive language]].
 
==SeeFormal alsodefinition==
 
* [[Automata theory]]
A '''thread automaton''' consists of
* a set ''N'' of states,<ref group=note>called ''non-terminal symbols'' by Villemonte (2002), p.1r</ref>
* a set Σ of terminal symbols,
* a start state ''A''<sub>''S''</sub> ∈ ''N'',
* a final state ''A''<sub>''F''</sub> ∈ ''N'',
* a set ''U'' of path components,
* a partial function δ: ''N'' → ''U''<sup>⊥</sup>, where ''U''<sup>⊥</sup> = ''U'' ∪ {⊥} for ⊥ ∉ ''U'',
* a finite set Θ of transitions.
 
A '''path''' ''u''<sub>1</sub>...''u''<sub>''n''</sub> ∈ ''U''<sup>[[Kleene star|*]]</sup> is a string of path components ''u''<sub>''i''</sub> ∈ ''U''; ''n'' may be 0, with the empty path denoted by ε.
A '''thread''' has the form ''u''<sub>1</sub>...''u''<sub>''n''</sub>:''A'', where ''u''<sub>1</sub>...''u''<sub>''n''</sub> ∈ ''U''<sup>*</sup> is a path, and ''A'' ∈ ''N'' is a state.
A '''thread store''' ''S'' is a finite set of threads, viewed as a partial function from ''U''<sup>*</sup> to ''N'', such that ''dom''(''S'') is [[closure (mathematics)|closed]] by [[prefix (computer science)|prefix]].
 
A thread automaton '''configuration''' is a triple {{math|{{angbr|''l'',''p'',''S''}}}}, where {{mvar|l}} denotes the current position in the input string, ''p'' is the active thread, and ''S'' is a thread store containing ''p''.
The '''initial configuration''' is {{math|{{angbr|0, ε, {{mset|ε:''A''<sub>''S''</sub>}}}}}}.
The '''final configuration''' is {{math|{{angbr|''n'', ''u'', {{mset|ε:''A''<sub>''S''</sub>,''u'':''A''<sub>''F''</sub>}}}}}}, where ''n'' is the length of the input string and ''u'' abbreviates δ(''A''<sub>''S''</sub>).
A '''transition''' in the set Θ may have one of the following forms, and changes the current automaton configuration in the following way:
* '''SWAP''' ''B'' →<sub>''a''</sub> ''C'': &nbsp; consumes the input symbol ''a'', and changes the state of the active thread:
: changes the configuration from &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l''+1, ''p'', ''S''∪{{mset|''p'':''C''}}}}}}
* '''SWAP''' ''B'' →<sub>ε</sub> ''C'': &nbsp; similar, but consumes no input:
: changes &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''C''}}}}}}
* '''PUSH''' ''C'': &nbsp; creates a new subthread, and suspends its parent thread:
: changes &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} &nbsp; where ''u''=δ(''B'') and ''pu''∉dom(''S'')
* '''POP''' [''B'']''C'': &nbsp; ends the active thread, returning control to its parent:
: changes &nbsp; {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''C''}}}}}} &nbsp; where δ(''C'')=⊥ and ''pu''∉dom(''S'')
* '''SPUSH''' [''C''] ''D'': &nbsp; resumes a suspended subthread of the active thread:
: changes &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''D''}}}}}} &nbsp; where ''u''=δ(''B'')
* '''SPOP''' [''B''] ''D'': &nbsp; resumes the parent of the active thread:
: changes &nbsp; {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} &nbsp; to &nbsp; {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''D'',''pu'':''C''}}}}}} &nbsp; where δ(''C'')=⊥
One may prove that δ(''B'')=''u'' for '''POP''' and '''SPOP''' transitions, and δ(''C'')=⊥ for '''SPUSH''' transitions.<ref>Villemonte (2002), p.1r-2r</ref>
 
An input string is '''accepted''' by the automaton if there is a sequence of transitions changing the initial into the final configuration.
 
==Notes==
{{reflist|group=note}}
 
==References==
{{reflist}}
<references/>
 
{{Formal languages and grammars}}
{{comp-sci-stub}}
[[Category:Models of computation]]
[[Category:Automata theory(computation)]]