Content deleted Content added
Corrected capitalizations. |
|||
(20 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|Device used in physical therapy}}
{{about|the gyroscopic exercise tool and toy|the US lottery|Powerball|other "powerballs"|Powerball (disambiguation)}}
[[Image:Gyrotwister.jpg|thumb|A gyroscopic wrist exerciser.]]
[[File:Video of a complete use session with a gyroscopic exercise tool.webm|thumb|Video showing the use - from starting the rotation with a 'shoestring' over various movements with the holding hand until stopping the rotor with the second hand. The demonstrated speeds are, in part, very high and not recommended for normal exercise due to the
A '''
==Mechanics==
{{Disputed section|Friction based explanation is wrong|date = March 2025}}
{{Tone|date=March 2024}}
Inside the outer shell, the spinning mass is fixed to a thin metal [[axle]], each end trapped in a circular, equatorial groove in the outer shell. A lightweight ring with two notches for the axle ends rests in the groove. This ring can slip in the groove, allowing
Since
By applying the proportionality of the [[Friction|kinetic force of friction]] to the [[normal force]], <math>
▲By applying the proportionality of the force of friction to the normal force, <math>F_\mathrm{f} = \mu_\mathrm{k} F_\mathrm{n}</math>, where <math>\mu_\mathrm{k}</math> is the [[Friction#Coefficient_of_friction|kinetic coefficient of friction]], it can be shown that the torque spinning up the mass is a factor of <math>\mu_\mathrm{k} \left( r_{\mathrm{axle}} / R_{\mathrm{groove}} \right)</math> smaller than the torque applied to the shell. Since frictional force is essential for the device's operation, the groove must not be lubricated as to allow for the friction of the ring to enact a force on the gyro.<ref>{{cite journal |title=The Physics of the ''Dyna Bee'' |date=February 1, 1980 |issn=0031-921X |doi=10.1119/1.2340452 |issue=2 |volume=18 |pages=147–8 |journal=The Physics Teacher |first=J. |last=Higbie|bibcode=1980PhTea..18..147H}} {{closed access}}</ref><ref>{{cite journal |title=Roller Ball Dynamics |date=2000 |issue=9 |volume=36 |journal=Mathematics Today |first=P. G. |last=Heyda}}</ref><ref>{{cite journal |title=Roller Ball Dynamics Revisited |date=October 1, 2002 |issn=0002-9505 |doi=10.1119/1.1499508 |issue=10 |volume=70 |pages=1049–51 |journal=American Journal of Physics |first=P. G. |last=Heyda|bibcode=2002AmJPh..70.1049H}}</ref><ref>{{cite journal |title=On the Dynamics of the Dynabee |date=June 1, 2000 |issn=0021-8936 |doi=10.1115/1.1304914 |issue=2 |volume=67 |pages=321–5 |journal=Journal of Applied Mechanics |first1=D. W. |last1=Gulick |first2=O. M. |last2=O’Reilly|bibcode=2000JAM....67..321G}}</ref><ref>{{cite journal |title=Modelling of the Robotic Powerball®: A Nonholonomic, Underactuated and Variable Structure-Type System |date=June 1, 2010 |doi=10.1080/13873954.2010.484237 |first1=Tadej |last1=Petrič |first2=Boris |last2=Curk |first3=Peter |last3=Cafuta |first4=Leon |last4=Žlajpah |journal=Mathematical and Computer Modelling of Dynamical Systems|volume=16|issue=4 |pages=327–346 |hdl=10.1080/13873954.2010.484237 |s2cid=120513329 |hdl-access=free}}</ref>
==References==
{{reflist}}
|