Content deleted Content added
LucasBrown (talk | contribs) Importing Wikidata short description: "Function that results in an exponential function when composed" |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Short description|
In [[mathematics]], a '''half-exponential function''' is a [[functional square root]] of an [[exponential function]]. That is, a [[function (mathematics)|function]] <math>f</math> such that <math>f</math> [[function composition|composed]] with itself results in an exponential function:{{r|sqrtexp|miltersen}}
<math display=block>f\bigl(f(x)\bigr) = ab^x,</math>
for some constants {{nowrap|<math>a</math> and <math>b</math>.}}
[[Hellmuth Kneser]] first proposed a [[holomorphic function|holomorphic]] construction of the solution of <math>f\bigl(f(x)\bigr) = e^x</math> in 1950. It is closely related to the problem of extending [[tetration]] to non-integer values; the value of <math>{}^\frac{1}{2} a</math> can be understood as the value of <math>f\bigl(1)</math>, where <math>f\bigl(x)</math> satisfies <math>f\bigl(f(x)\bigr) = a^x</math>. Example values from Kneser's solution of <math>f\bigl(f(x)\bigr) = e^x</math> include <math>f\bigl(0) \approx 0.49856</math> and <math>f\bigl(1) \approx 1.64635</math>.
==Impossibility of a closed-form formula==
Line 38 ⟶ 40:
Crone and Neuendorffer claim that there is no semi-exponential function f(x)
that is both (a) analytic and (b) always maps reals to reals.
The [[piecewise]] solution above achieves goal (b) but not (a).
Achieving goal (a) is possible by writing <math>e^x</math> as a Taylor
series based at a fixpoint Q (there are an infinitude of such fixpoints,
Line 44 ⟶ 46:
for example <math>Q=0.3181315+1.3372357i</math>), making
Q also be a fixpoint of f, that is <math>f(Q)=e^Q=Q</math>,
then computing the [[Taylor series|Maclaurin series]] coefficients of <math>f(x-Q)</math> one by one. This results in Kneser's construction mentioned above.
==Application==
|