Nonlinear complementarity problem: Difference between revisions

Content deleted Content added
m Reverted edits by !matt5454!matt (talk) to last version by Citation bot
m top: def acro per MOS
 
(5 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Mathematics problem}}
{{Underlinked|date=February 2017}}
In [[applied mathematics]], a '''nonlinear complementarity problem''' ('''NCP)''') with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
In [[applied mathematics]], a '''nonlinear complementarity problem (NCP)''' with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
: <math>x \geq 0,\ f(x) \geq 0 \text{ and } x^{T}f(x)=0 </math>
 
where ''&fnof;''(''x'') is a smooth mapping. The case of a discontinuous mapping was discussed by Habetler and Kostreva (1978).
 
== References ==
 
* {{cite documentjournal |last1=Ahuja |first1=Kapil |last2=Watson |first2=Layne T. |last3=Billups |authorfirst3=Stephen C. Billups|title=A newProbability-one homotopy methodmaps for solving non-linearmixed complementarity problems |journal=Computational Optimization and Applications |date=December 2008 |volume=41 |issue=3 |pages=363–375 |doi=10.1007/s10589-007-9107-z|hdl=10919/31539 |hdl-access=free }}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp|isbn=0-12-192350-9 |mr=1150683}}