Content deleted Content added
Isaidnoway (talk | contribs) →References: journal |
m →top: def acro per MOS |
||
(One intermediate revision by one other user not shown) | |||
Line 1:
{{Short description|Mathematics problem}}
In [[applied mathematics]], a '''nonlinear complementarity problem''' ('''NCP
: <math>x \geq 0,\ f(x) \geq 0 \text{ and } x^{T}f(x)=0 </math>
Line 8:
== References ==
* {{cite journal |last1=Ahuja |first1=Kapil |last2=Watson |first2=Layne T. |last3=Billups |first3=Stephen C. |title=Probability-one homotopy maps for mixed complementarity problems |journal=Computational Optimization and Applications |date=December 2008 |volume=41 |issue=3 |pages=363–375 |doi=10.1007/s10589-007-9107-z|hdl=10919/31539 |hdl-access=free }}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp|isbn=0-12-192350-9 |mr=1150683}}
|