Content deleted Content added
m ←Created page with '==Definition== A '''Nonlinear Complementarity Problem (NCP)''' with respect to a mapping <math>f: \mathbb{R}^n \to \mathbb{R}^n</math>, denoted by NCP<math>(f)</ma...' |
m →top: def acro per MOS |
||
(19 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|Mathematics problem}}
In [[applied mathematics]], a '''nonlinear complementarity problem''' ('''NCP''') with respect to a mapping ''ƒ'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>, denoted by NCP''ƒ'', is to find a vector ''x'' ∈ '''R'''<sup>''n''</sup> such that
▲: <math>x \geq 0, f(x)\geq 0 </math> and <math> x^{T}f(x)=0</math>
where
== References ==
* {{cite
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp|isbn=0-12-192350-9 |mr=1150683}}
{{Mathematical programming}}
[[Category:
{{applied-math-stub}}
|