Nonlinear complementarity problem: Difference between revisions

Content deleted Content added
Yobot (talk | contribs)
m WP:CHECKWIKI error fixes, added deadend tag using AWB (10093)
m top: def acro per MOS
 
(15 intermediate revisions by 13 users not shown)
Line 1:
{{Short description|Mathematics problem}}
{{Dead end|date=May 2014}}
In [[applied mathematics]], a '''nonlinear complementarity problem''' ('''NCP)''') with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
: <math>x \geq 0,\ f(x) \geq 0 \text{ and } x^{T}f(x)=0 \,</math>
In applied mathematics, a '''nonlinear complementarity problem (NCP)''' with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
where ''&fnof;''(''x'') is a smooth mapping. The case of a discontinuous mapping was discussed by Habetler and Kostreva (1978).
: <math>x \geq 0,\ f(x) \geq 0 \text{ and } x^{T}f(x)=0 \,</math>
 
where ''&fnof;''(''x'') is a smooth mapping.
 
== References ==
 
* {{cite paperjournal |last1=Ahuja |first1=Kapil |last2=Watson |first2=Layne T. |last3=Billups |authorfirst3=Stephen C. Billups|title=A newProbability-one homotopy methodmaps for solving non-linearmixed complementarity problems |journal=Computational Optimization and Applications |date=December 2008 |volume=41 |issue=3 |pages=363–375 |doi=10.1007/s10589-007-9107-z|hdl=10919/31539 |hdl-access=free }}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp.|isbn=0-12-192350-9}} {{MR|mr=1150683}}
url=http://www.informaworld.com/smpp/content~db=all~content=a905306577|accessdate=2010-03-13}}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp.|isbn=0-12-192350-9}} {{MR|1150683}}
 
{{Mathematical programming}}
 
[[Category:MathematicalApplied optimizationmathematics]]
 
 
{{applied-math-stub}}