Height function: Difference between revisions

Content deleted Content added
Bumpf (talk | contribs)
See also: Unrelated
Tags: Mobile edit Mobile web edit Advanced mobile edit
Citation bot (talk | contribs)
Altered title. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Polynomials | #UCB_Category 176/223
 
(One intermediate revision by one other user not shown)
Line 30:
Therefore, the naive multiplicative and logarithmic heights of {{math|4/10}} are {{math|5}} and {{math|log(5)}}, for example.
 
The naive height ''H'' of an [[elliptic curve]] ''E'' given by {{math|''y<sup>2</sup> {{=}} x<sup>3</sup> + Ax + B''}} is defined to be {{math|''H(E)'' {{=}} log max(4&#124;{{pipe}}''A''&#124;{{pipe}}<sup>3</sup>, 27&#124;{{pipe}}''B''&#124;{{pipe}}<sup>2</sup>)}}.
 
===Néron–Tate height===
Line 117:
*{{cite journal|last=Weil|first=André|author-link=André Weil|title=L'arithmétique sur les courbes algébriques|journal=[[Acta Mathematica]]|volume=52|year=1929|pages=281–315|issue=1|doi=10.1007/BF02592688|mr=1555278 |doi-access=free}}
*{{cite book |title=Advanced Topics in the Arithmetic of Elliptic Curves |last=Silverman |first=Joseph H. |author-link=Joseph H. Silverman |year=1994|publisher=Springer |___location= New York |isbn=978-1-4612-0851-8 }}
*{{cite book | last1=Vojta | first1=Paul | author1-link=Paul Vojta | title=Diophantine approximationsApproximations and valueValue distributionDistribution theoryTheory | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-17551-3 | doi=10.1007/BFb0072989 | zbl=0609.14011 | mr=883451 | year=1987 | volume=1239 }}
*{{cite book | first1=Andrey | last1=Kolmogorov | author-link1=Andrey Kolmogorov | first2=Sergei | last2= Fomin | author-link2=Sergei Fomin | title=Elements of the Theory of Functions and Functional Analysis |___location= New York | publisher=Graylock Press | year=1957}}