Content deleted Content added
Fix cite date error |
m Open access bot: arxiv updated in citation with #oabot. |
||
(61 intermediate revisions by 31 users not shown) | |||
Line 1:
{{Short description|Problem in astronomy}}
In [[astronomy]], the '''lithium problem''' or '''lithium discrepancy''' refers to the discrepancy between the primordial [[Abundance of the chemical elements|abundance]] of [[lithium]] as inferred from observations of metal-poor ([[Stellar population|Population II]]) [[Stellar halo|halo stars]] in our
[[File:Schramm plot BBN review 2019.png|thumb|400px|This "Schramm plot"<ref>{{cite journal | last1=Tanabashi
==Origin of lithium==
Minutes after the Big Bang, the universe was made almost entirely of hydrogen and helium, with trace amounts of lithium and beryllium, and negligibly small abundances of all heavier elements.<ref name="habitable"/><ref>{{cite web|url=https://physics.unc.edu/the-cosmological-lithium-problem/|title=Cosmological lithium problem|website=University of North Carolina|date=14 September 2020 }}</ref>
===Lithium synthesis in the Big Bang===
Line 37:
|}
The amount of lithium generated in the Big Bang can be calculated.<ref>{{cite journal | bibcode= 1985ARA&A..23..319B | title= Big bang nucleosynthesis – Theories and observations | last1= Boesgaard | first1=A. M. | last2= Steigman | first2= G. | volume= 23 |date= 1985 | pages= 319–378 | journal= [[Annual Review of Astronomy and Astrophysics]] |id=A86-14507 04–90 |___location=Palo Alto, CA | doi= 10.1146/annurev.aa.23.090185.001535}}</ref> [[Hydrogen-1]] is the most abundant [[nuclide]], comprising roughly 92% of the atoms in the Universe, with [[helium-4]] second at 8%. Other isotopes including <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>6</sup>Li, <sup>7</sup>Li, and <sup>7</sup>Be are much rarer; the estimated abundance of primordial lithium is 10<sup>−10</sup> relative to hydrogen.<ref name=23bbn>{{cite book |last1=Tanabashi |first1=M. |display-authors=et al. |editor-last1=Fields |editor-first1=B. D. |editor-last2=Molaro |editor-first2=P. |editor-last3=Sarkar |editor-first3=S. |title=The Review |date=2018 |chapter=Big-bang nucleosynthesis |journal=Physical Review D |volume=98 |issue=3 |pages=377–382 |doi=10.1103/PhysRevD.98.030001 |bibcode=2018PhRvD..98c0001T |url=https://pdg.lbl.gov/2019/reviews/rpp2018-rev-bbang-nucleosynthesis.pdf
}}</ref> The calculated abundance and ratio of <sup>1</sup>H and <sup>4</sup>He is in agreement with data from observations of young stars.<ref name="habitable">{{cite book |isbn=978-0691140063|title=How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind|last1=Langmuir|first1=C. H.|last2=Broecker|first2=W. S.|year=2012|publisher=Princeton University Press }}</ref>
===The P-P II branch===
Line 52:
-->:{| border="0"
|- style="height:2em;"
|{{nuclide|link=yes|helium|3}} ||+ ||{{nuclide|link=yes|helium|4}} ||→ ||{{nuclide|link=yes|beryllium|7}} ||+ ||{{math|{{SubatomicParticle|link=yes|Gamma}}}}
|- style="height:2em;"
|{{nuclide|link=yes|beryllium|7}} ||+ ||{{SubatomicParticle|link=yes|Electron}} ||→ ||{{nuclide|link=yes|lithium|7|charge=-}} ||+ ||{{math|{{SubatomicParticle|link=yes|Electron Neutrino}}}} ||+ ||{{val|0.861|u=MeV}} ||/ ||{{val|0.383|u=MeV}}
|- style="height:2em;"
|{{nuclide|link=yes|lithium|7}} ||+ ||{{nuclide|link=yes|hydrogen|1}} ||→ ||2 {{nuclide|link=yes|helium|4}}
Line 65:
==Observed abundance of lithium==
Despite the low theoretical abundance of lithium, the actual observable amount is less than the calculated amount by a factor of
[[Image:SolarSystemAbundances.svg|thumb|center|800px|Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, residuals within the paradigm of the Big Bang.<ref>{{cite book |last1=Stiavelli |first1=M. |year=2009 |title=From First Light to Reionization the End of the Dark Ages |url=https://books.google.com/books?id=iCLNBElRTS4C&pg=PA8 |page=8 |publisher=[[Wiley-VCH]] |___location=Weinheim, Germany |isbn=9783527627370|bibcode=2009fflr.book.....S }}</ref> Li, Be and B are rare because they are poorly synthesized in the Big Bang and also in stars; the main source of these elements is [[cosmic ray spallation]].]]
Older stars seem to have less lithium than they should, and some younger stars have much more.<ref name="MWoo">{{cite web|title=The Cosmic Explosions That Made the Universe|url=http://www.bbc.com/earth/story/20170220-the-cosmic-explosions-that-made-the-universe|last=Woo|first=M.|date=21 Feb 2017|website=earth|publisher=BBC|url-status=live|archiveurl=https://web.archive.org/web/20170221214442/http://www.bbc.com/earth/story/20170220-the-cosmic-explosions-that-made-the-universe|archivedate=21 February 2017|access-date=21 Feb 2017|quote=A mysterious cosmic factory is producing lithium. Scientists are now getting closer at finding out where it comes from|df=dmy-all}}</ref>
[[File:Nova Centauri 2013 ESO.jpg|thumb|[[Nova Centauri 2013]] is the first in which evidence of lithium has been found.<ref>{{cite web|title=First Detection of Lithium from an Exploding Star|url=http://www.eso.org/public/news/eso1531/|accessdate=29 July 2015|url-status=dead|archiveurl=https://web.archive.org/web/20150801001700/http://www.eso.org/public/news/eso1531/|archivedate=1 August 2015|df=dmy-all}}</ref>]]
Lithium is also found in [[brown dwarf]] substellar objects and certain anomalous
▲Lithium is also found in [[brown dwarf]] substellar objects and certain anomalous orange stars. Because lithium is present in cooler, less-massive brown dwarfs, but is destroyed in hotter [[red dwarf]] stars, its presence in the stars' spectra can be used in the "lithium test" to differentiate the two, as both are smaller than the Sun.<ref name=emsley/><ref name="Cain"/><ref>{{cite web|url=http://www-int.stsci.edu/~inr/ldwarf3.html |archive-url=https://archive.is/20130521055905/http://www-int.stsci.edu/~inr/ldwarf3.html |url-status=dead |archive-date=21 May 2013 |title=L Dwarf Classification|accessdate=6 March 2013 | first =N. | last = Reid | date = 10 March 2002}}</ref>
===Less lithium in Sun-like stars with planets===
{{Cite journal
|last1=Israelian |first1=G.
|display-authors=etal
|date = 2009
|title = Enhanced lithium depletion in Sun-like stars with orbiting planets
|journal = [[Nature (journal)|Nature]]
|volume =462|issue=7270| pages=189–191
|doi=10.1038/nature08483
|pmid = 19907489
|bibcode=2009Natur.462..189I
|arxiv = 0911.4198
|s2cid=388656
|quote=<span style="font-family:LatinModern;"><small>... confirm the peculiar behaviour of Li in the effective temperature range 5600–5900 K ... We found that the immense majority of planet host stars have severely depleted lithium ... At higher and lower temperatures planet-host stars do not appear to show any peculiar behaviour in their Li abundance.</small></span>}}</ref> The Sun's surface layers have less than 1% the lithium of the original formation [[Formation and evolution of the Solar System#Formation|protosolar gas clouds]] despite the surface convective zone not being quite hot enough to burn lithium.<ref name = "Israelian"/> It is suspected that the gravitational pull of planets might enhance the churning up of the star's surface, driving the lithium to hotter cores where [[lithium burning]] occurs.<ref name="Discover"/><ref name = "Israelian"/> The absence of lithium could also be a way to find new planetary systems.<ref name="Discover"/> However, this claimed relationship has become a point of contention in the planetary astrophysics community, being frequently denied<ref name="BaumannRamírez2010">{{cite journal|last1=Baumann|first1=P.|last2=Ramírez|first2=I.|last3=Meléndez|first3=J.|last4=Asplund|first4=M.|last5=Lind|first5=K.|display-authors=2|title=Lithium depletion in solar-like stars: no planet connection|journal=Astronomy and Astrophysics|volume=519|year=2010|pages=A87|issn=0004-6361|doi=10.1051/0004-6361/201015137|arxiv=1008.0575 |bibcode=2010A&A...519A..87B |doi-access=free}}</ref><ref name="RamírezFish2012">{{cite journal|last1=Ramírez|first1=I.|last2=Fish|first2=J. R.|last3=Lambert|first3=D. L.|last4=Allende Prieto|first4=C.|display-authors=2|title=Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets|journal=The Astrophysical Journal|volume=756|issue=1|year=2012|pages=46|issn=0004-637X|doi=10.1088/0004-637X/756/1/46|arxiv=1207.0499 |bibcode=2012ApJ...756...46R |hdl=2152/34872|s2cid=119199829 |hdl-access=free}}</ref> but also supported.<ref name="FigueiraFaria2014">{{cite journal|last1=Figueira|first1=P.|last2=Faria|first2=J. P.|last3=Delgado-Mena|first3=E.|last4=Adibekyan|first4=V. Zh.|last5=Sousa|first5=S. G.|last6=Santos|first6=N. C.|last7=Israelian|first7=G.|display-authors=2|title=Exoplanet hosts reveal lithium depletion|journal=Astronomy & Astrophysics|volume=570|year=2014|pages=A21|issn=0004-6361|doi=10.1051/0004-6361/201424218|doi-access=free|arxiv=1409.0890}}</ref><ref name="Delgado MenaIsraelian2014">{{cite journal|last1=Delgado Mena|first1=E.|last2=Israelian|first2=G.|last3=González Hernández|first3=J. I.|last4=Sousa|first4=S. G.|last5=Mortier|first5=A.|last6=Santos|first6=N. C.|last7=Adibekyan|first7=V. Zh.|last8=Fernandes|first8=J.|last9=Rebolo|first9=R.|last10=Udry|first10=S.|last11=Mayor|first11=M.|display-authors=2|title=Li depletion in solar analogues with exoplanets|journal=Astronomy & Astrophysics|volume=562|year=2014|pages=A92|issn=0004-6361|doi=10.1051/0004-6361/201321493|doi-access=free|arxiv=1311.6414}}</ref>
===Higher than expected lithium in metal-poor stars===
Certain
==Proposed solutions==
Line 88 ⟶ 100:
=== Astrophysical solutions ===
Considering the possibility that BBN predictions are sound, the measured value of the primordial
Some astronomers suggest that the velocities of nucleons do not follow a [[Maxwell-Boltzmann distribution]]. They test the framework of Tsallis non-extensive statistics. Their result suggest that {{nowrap|1.069 < q < 1.082}} is a possible new solution to the cosmological lithium problem.<ref>{{Cite journal |last1=Hou |first1=S. Q. |last2=He |first2=J. J. |last3=Parikh |first3=A. |last4=Kahl |first4=D. |last5=Bertulani |first5=C. A. |last6=Kajino |first6=T. |last7=Mathews |first7=G. J. |last8=Zhao |first8=G. |title=Non-Extensive Statistics to the Cosmological Lithium Problem |date=2017-01-11 |journal=The Astrophysical Journal |volume=834 |issue=2 |pages=165 |doi=10.3847/1538-4357/834/2/165 |arxiv=1701.04149 |bibcode=2017ApJ...834..165H |s2cid=568182 |issn=1538-4357 |doi-access=free }}</ref>
=== Nuclear Physics solutions ===▼
Now consider the possibility that the measured primordial Lithium abundance is correct and based on the [[Standard Model]] of particle physics and the standard cosmology, then the Lithium problem implies errors in the BBN light element predictions. Although standard BBN rests on well-determined physics, the weak and strong interactions are complicated for BBN and therefore might be the weak point in standard BBN calculation.<ref name="fields11" />▼
▲
Second, starting from [[Fred Hoyle]]'s discovery of a [[Resonance (particle physics)|resonance]] in [[carbon-12]], an important factor in the [[triple-alpha process]], resonance reactions, some of which might have evaded experimental detection or whose effects have been underestimated, become possible solutions to the lithium problem.<ref>{{Cite journal|last1=Hammache|first1=F.|last2=Coc|first2=A.|last3=de Séréville|first3=N.|last4=Stefan|first4=I.|last5=Roussel|first5=P.|last6=Ancelin|first6=S.|last7=Assié|first7=M.|last8=Audouin|first8=L.|last9=Beaumel|first9=D.|last10=Franchoo|first10=S.|last11=Fernandez-Dominguez|first11=B.|date=December 2013|title=Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem|url=https://ui.adsabs.harvard.edu/abs/2013PhRvC..88f2802H/abstract|journal=Physical Review C|language=en|volume=88|issue=6|pages=062802|doi=10.1103/PhysRevC.88.062802|issn=0556-2813|arxiv=1312.0894|bibcode=2013PhRvC..88f2802H |s2cid=119110688 }}</ref><ref>{{Cite journal|last1=O'Malley|first1=P. D.|last2=Bardayan|first2=D. W.|last3=Adekola|first3=A. S.|last4=Ahn|first4=S.|last5=Chae|first5=K. Y.|last6=Cizewski|first6=J. A.|author6-link= Jolie Cizewski |last7=Graves|first7=S.|last8=Howard|first8=M. E.|last9=Jones|first9=K. L.|last10=Kozub|first10=R. L.|last11=Lindhardt|first11=L.|date=October 2011|title=Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances|url=https://ui.adsabs.harvard.edu/abs/2011PhRvC..84d2801O/abstract|journal=Physical Review C|language=en|volume=84|issue=4|pages=042801|doi=10.1103/PhysRevC.84.042801|bibcode=2011PhRvC..84d2801O |issn=0556-2813}}</ref> These include:
{| border="0"
|- style="height:2em;"
|{{nuclide|link=yes|beryllium|7}} ||+ ||{{nuclide|link=yes|hydrogen|2}} ||→ ||{{nuclide|link=yes|boron|9}} *
|- style="height:2em;"
|{{nuclide|link=yes|beryllium|7}} ||+ ||{{nuclide|link=yes|hydrogen|3}} ||→ ||{{nuclide|link=yes|boron|10}} *
|-
|{{nuclide|link=yes|beryllium|7}}
| +
|{{nuclide|link=yes|helium|3}}
|→
|{{nuclide|link=yes|carbon|10}} *
|}Experimental and theoretical analyses rule out the first and third reactions.<ref name="o946">{{cite journal |last=Cyburt |first=Richard H. |last2=Fields |first2=Brian D. |last3=Olive |first3=Keith A. |last4=Yeh |first4=Tsung-Han |date=2016-02-23 |title=Big bang nucleosynthesis: Present status |url=https://link.aps.org/accepted/10.1103/RevModPhys.88.015004 |journal=Reviews of Modern Physics |volume=88 |issue=1 |page= |doi=10.1103/RevModPhys.88.015004 |issn=0034-6861 |access-date=2025-03-30 |doi-access=free|arxiv=1505.01076 }}</ref>
''[[BBC Science Focus]]'' wrote in 2023 that "recent research seems to completely discount" such theories; the magazine held that mainstream lithium nucleosynthesis calculations are probably correct.<ref name=BBC2023>{{cite news |url=https://www.sciencefocus.com/science/lithium-shortage-universe/ |title=The lithium problem: Why the element keeps disappearing |work=BBC Science Focus Magazine |date=16 June 2023 |author=Alastair Gunn |access-date=17 June 2023}}</ref>
=== Beyond the Standard Model solutions ===▼
Under the assumptions of all correct calculation, solutions beyond the existing Standard Model or standard cosmology might be needed.<ref name="fields11" />▼
▲Under the assumptions of all correct calculation, solutions [[beyond the standard model|beyond]] the existing [[Standard Model]] or standard cosmology might be needed.<ref name="fields11" />
Dark matter decay and [[supersymmetry]] provide one possibility, in which decaying dark matter scenarios introduce a rich array of novel processes that can alter light elements during and after BBN, and find the well-motivated origin in supersymmetric cosmologies. With the fully operational [[Large Hadron Collider]] (LHC), much of minimal supersymmetry lies within reach, which would revolutionize particle physics and cosmology if discovered;<ref name="fields11" /> however, results from the ATLAS experiment in 2020 have excluded many supersymmetric models.<ref>{{Cite journal|last=Collaboration|first=Atlas|year=2021|title=Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$^{-1}$ of $\sqrt{s}$ =13 TeV $pp$ collision data with the ATLAS detector|journal=Jhep |volume=02 |page=143 |language=en|doi=10.1007/JHEP02(2021)143|arxiv=2010.14293 |s2cid=256039464 }}</ref><ref>{{Cite web|last=Sutter|first=Paul|date=2021-01-07|title=From squarks to gluinos: It's not looking good for supersymmetry|url=https://www.space.com/no-signs-supersymmetry-large-hadron-collider|access-date=2021-10-29|website=Space.com|language=en}}</ref>
Changing Fundamental Constants can be one possible solution, and it implies that first, atomic transitions in metals residing in high-redshift regions might behave differently from our own; second, Standard Model couplings and particle masses might vary; third, variation in nuclear physics parameters is needed.<ref name="fields11" />▼
▲Changing
Nonstandard Cosmologies indicate variation of baryon to photon ratio in different regions. One proposal is a result of large-scale inhomogeneities in cosmic density, different from homogeneity defined in the [[cosmological principle]]. However, this possibility requires a large amount of observations to test it.<ref>{{Cite journal|last=Holder|first=Gilbert P.|last2=Nollett|first2=Kenneth M.|last3=van Engelen|first3=Alexander|date=June 2010|title=On Possible Variation in the Cosmological Baryon Fraction|url=https://ui.adsabs.harvard.edu/abs/2010ApJ...716..907H/abstract|journal=ApJ|language=en|volume=716|issue=2|pages=907–913|doi=10.1088/0004-637X/716/2/907|issn=0004-637X}}</ref>▼
▲Nonstandard
== See also ==▼
▲==See also==
* [[Big Bang]]
* [[Halo nucleus]]
* [[Isotopes of lithium]]
* [[List of unsolved problems in physics]]
* [[Lithium burning]]
==Further reading==
* {{cite journal |last1=Fields |first1=Brian D. |title=The Primordial Lithium Problem |journal=Annual Review of Nuclear and Particle Science |volume=61 |year=2011 |pages=47–68 |doi=10.1146/annurev-nucl-102010-130445 |arxiv=1203.3551|bibcode=2011ARNPS..61...47F }}
* {{cite journal |doi=10.1103/PhysRevD.83.063006 |title=Resonant destruction as a possible solution to the cosmological lithium problem |date=2011 |last1=Chakraborty |first1=Nachiketa |last2=Fields |first2=Brian D. |last3=Olive |first3=Keith A. |journal=Physical Review D |volume=83 |issue=6 |page=063006 |arxiv=1011.0722 |bibcode=2011PhRvD..83f3006C }}
* {{cite journal |doi=10.1142/S0218301312500048 |title=Resonant Enhancement of Nuclear Reactions as a Possible Solution to the Cosmological Lithium Problem |date=2012 |last1=Cyburt |first1=Richard H. |last2=Pospelov |first2=Maxim |journal=International Journal of Modern Physics E |volume=21 |issue=1 |pages=1250004-1-1250004-13 |arxiv=0906.4373 |bibcode=2012IJMPE..2150004C }}
* {{cite journal |last1=Hou |first1=S. Q. |last2=Yan |first2=H. L. |last3=Li |first3=X. Y. |last4=Zhou |first4=X. H. |last5=Sun |first5=B. |title=Non-Extensive Statistics to the Cosmological Lithium Problem |journal=The Astrophysical Journal |volume=834 |issue=2 |year=2017 |pages=165 |doi=10.3847/1538-4357/834/2/165 |doi-access=free |arxiv=1701.03700|bibcode=2017ApJ...834..165H }}
==References==
|