Content deleted Content added
m hyphen. abc. |
|||
(27 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|Model of electronic circuits involving transistors}}
The '''hybrid-pi model''' is a popular [[Electronic circuit|circuit]] model used for analyzing the [[small signal]] behavior of bipolar junction and field effect [[transistors]]. Sometimes it is also called '''Giacoletto model''' because it was introduced by [[Lawrence J. Giacoletto|L.J. Giacoletto]] in 1969.<ref>Giacoletto, L.J. "Diode and transistor equivalent circuits for transient operation" IEEE Journal of Solid-State Circuits, Vol 4, Issue 2, 1969 [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1049963&contentType=Journals+%26+Magazines&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A22508%29]</ref> The model can be quite accurate for low-frequency circuits and can easily be adapted for higher frequency circuits with the addition of appropriate inter-electrode [[capacitance]]s and other parasitic elements.▼
▲
==BJT parameters==▼
The hybrid-pi model is a linearized [[two-port network]] approximation to the BJT using the small-signal base-emitter voltage, <math>\scriptstyle v_\text{be}</math>, and collector-emitter voltage, <math>\scriptstyle v_\text{ce}</math>, as independent variables, and the small-signal base current, <math>\scriptstyle i_\text{b}</math>, and collector current, <math>\scriptstyle i_\text{c}</math>, as dependent variables.<ref name=Jaeger1>▼
▲== BJT parameters ==
▲The hybrid-pi model is a linearized [[two-port network]] approximation to the BJT using the small-signal base-emitter voltage, <math>\
{{cite book
|author=R.C. Jaeger and T.N. Blalock
Line 10 ⟶ 12:
|publisher=McGraw-Hill
|___location=New York
|isbn=978-0-07-232099-
|pages=Section 13.5, esp. Eqs. 13.19
|url=http://worldcat.org/isbn/0072320990
Line 17 ⟶ 19:
[[File:H pi model.svg|thumb|Figure 1: Simplified, low-frequency hybrid-pi [[BJT]] model.]]
A basic, low-frequency hybrid-pi model for the [[bipolar transistor]] is shown in figure 1. The various parameters are as follows.
: <math>g_\text{m} = \left.\frac{i_\text{c}}{v_\text{be}}\right\vert_{v_\text{ce} = 0} = \frac{I_\text{C}}{V_\text{T}}</math>
is the [[transconductance]], evaluated in a simple model,<ref name=Jaeger>
{{cite book
|author=R.C. Jaeger and T.N. Blalock
|title=Eq. 5.45 pp. 242 and Eq. 13.25 p. 682
|isbn=978-0-07-232099-
|url=http://worldcat.org/isbn/0072320990
|year=2004
}}</ref> where:▼
|publisher=McGraw-Hill
* <math>\scriptstyle I_\text{C} \,</math> is the [[quiescent current|quiescent]] collector current (also called the collector bias or DC collector current)▼
▲ }}</ref> where:
* <math>\scriptstyle V_\text{T} ~=~ \frac{kT}{e}</math> is the ''[[Boltzmann constant#Role in semiconductor physics: the thermal voltage|thermal voltage]]'', calculated from [[Boltzmann's constant]], <math>\scriptstyle k</math>, the [[elementary charge|charge of an electron]], <math>\scriptstyle e</math>, and the transistor temperature in [[kelvin]]s, <math>\scriptstyle T</math>. At approximately [[room temperature]] (295{{space}}K, 22{{space}}°C or 71{{space}}°F), <math>\scriptstyle V_\text{T}</math> is about 25 mV.▼
▲* <math>\
▲* <math>\
where:
* <math>\textstyle I_\text{B}</math> is the DC (bias) base current.
* <math>\
* <math>\
=== Related terms ===▼
▲* <math>\scriptstyle \beta_0 ~=~ \frac{I_\text{C}}{I_\text{B}} \,</math> is the current gain at low frequencies (generally quoted as ''h''<sub>fe</sub> from the [[Bipolar junction transistor#h-parameter model|h-parameter model]]). Here <math>\scriptstyle I_\text{B}</math> is the DC (bias) base current. This is a parameter specific to each transistor, and can be found on a datasheet.
The ''output [[electrical conductance|conductance]]'', ''g''{{sub|ce}}, is the reciprocal of the output resistance, ''r''{{sub|o}}:▼
▲* <math>\scriptstyle r_\text{o} ~=~ \left.\frac{v_\text{ce}}{i_\text{c}}\right\vert_{v_\text{be} = 0} ~=~ \frac{1}{I_\text{C}}\left(V_\text{A} \,+\, V_\text{CE}\right) ~\approx~ \frac{V_\text{A}}{I_\text{C}}</math> is the output resistance due to the [[Early effect]] (<math>\scriptstyle V_\text{A}</math> is the Early voltage).
: <math>g_\text{ce} = \frac{1}{r_\text{o}}</math>.▼
▲===Related terms===
▲The ''output [[conductance]]'', ''g''{{sub|ce}}, is the reciprocal of the output resistance, ''r''{{sub|o}}:
▲:<math>g_\text{ce} = \frac{1}{r_\text{o}}</math>.
The ''[[transresistance]]'', ''r''{{sub|m}}, is the reciprocal of the transconductance:
: <math>r_\text{
=== Full model ===
[[File:Hybrid-pi detailed model.svg|thumb|Full hybrid-pi model]]
The full model introduces the virtual terminal,
{{-}}
== MOSFET parameters ==
[[File:MOSFET small signal.svg|thumb|Figure 2: Simplified, low-frequency hybrid-pi [[MOSFET]] model.]]
A basic, low-frequency hybrid-pi model for the [[MOSFET]] is shown in figure 2. The various parameters are as follows.
: <math>g_\text{m} = \left.\frac{i_\text{d}}{v_\text{gs}}\right\vert_{v_\text{ds} = 0}</math>
is the [[transconductance]], evaluated in the
▲is the [[transconductance]], evaluated in the Shichman-Hodges model in terms of the [[Q-point]] drain current, <math>\scriptstyle I_\text{D}</math>, by (see Jaeger and Blalock<ref name=Jaeger2>
{{cite book
|author=R.C. Jaeger and T.N. Blalock
|title=Eq. 4.20 pp. 155 and Eq. 13.74 p. 702
|isbn=978-0-07-232099-
|url=http://worldcat.org/isbn/0072320990
|year=2004
}}</ref>):▼
|publisher=McGraw-Hill
: <math>g_\text{m} = \frac{2I_\text{D}}{V_{\text{GS}} - V_\text{th}}</math>,
where:
* <math>\scriptstyle I_\text{D} </math> is the [[quiescent current|quiescent]] drain current (also called the drain bias or DC drain current)
Line 69 ⟶ 70:
The combination:
: <math>V_\text{ov} = V_\text{GS} - V_\text{th}</math>
is often called ''overdrive voltage''.
: <math>r_\text{o} = \left.\frac{v_\text{ds}}{i_\text{d}}\right\vert_{v_\text{gs} = 0}</math>
is the output resistance due to [[channel length modulation]], calculated using the
: <math>\begin{align}▼
▲is the output resistance due to [[channel length modulation]], calculated using the Shichman-Hodges model as
▲:<math>\begin{align}
r_\text{o} &= \frac{1}{I_\text{D}}\left(\frac{1}{\lambda} + V_\text{DS}\right) \\
&= \frac{1}{I_\text{D}}\left(V_E L + V_\text{DS}\right) \approx \frac{V_E L}{I_\text{D}}
\end{align}</math>
using the approximation for the ''channel length modulation'' parameter, ''λ'':<ref name=Sansen>▼
▲using the approximation for the ''channel length modulation'' parameter, λ:<ref name=Sansen>
{{cite book
|author=W. M. C. Sansen
Line 88 ⟶ 86:
|publisher=Springer
|___location=Dordrechtμ
|isbn=978-0-387-25746-
|url=http://worldcat.org/isbn/0387257462
}}</ref>
: <math> \lambda = \frac{1}{
Here ''V''<sub>E</sub>
▲Here ''V<sub>E</sub>'' is a technology-related parameter (about 4 V/μm for the [[65 nanometer|65 nm]] technology node<ref name = Sansen/>) and ''L'' is the length of the source-to-drain separation.
The ''drain conductance'' is the reciprocal of the output resistance:
: <math>g_\text{ds} = \frac{1}{r_\text{o}} </math>.
*[[Small signal model]]▼
*[[Bipolar junction transistor#h-parameter model|h-parameter model]]▼
==
▲* [[Bipolar junction transistor#h-parameter model|h-parameter model]]
== References and notes ==
{{reflist}}
|