Content deleted Content added
Tom.Reding (talk | contribs) m +{{Authority control}} (1 ID from Wikidata); WP:GenFixes & cleanup on |
→Connection with Laguerre polynomials and similar representations: semicolon is replaced by comma |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 36:
and many of the properties of the confluent hypergeometric function are limiting cases of properties of the hypergeometric function.
Since Kummer's equation is second order there must be another, independent, solution. The [[indicial equation]] of the method of Frobenius tells us that the lowest power of a [[power series]] solution to the Kummer equation is either 0 or {{math|1 − ''b''}}. If we let {{math|''w''(''z'')}} be
:<math>w(z)=z^{1-b}v(z)</math>
then the differential equation gives
Line 62:
===Other equations===
Confluent Hypergeometric Functions can be used to solve the Extended Confluent Hypergeometric Equation whose general form is given as:
:<math>z\frac{d^2w}{dz^2} +(b-z)\frac{dw}{dz} -\left(\sum_{m=0}^M a_m z^m\right)w = 0</math> <ref>{{cite journal|last1=Campos|first1=
Note that for {{math|''M'' {{=}} 0}} or when the summation involves just one term, it reduces to the conventional Confluent Hypergeometric Equation.
Line 171:
:<math>M\left(a,b,\frac{x y}{x-1}\right) = (1-x)^a \cdot \sum_n\frac{a^{(n)}}{b^{(n)}}L_n^{(b-1)}(y)x^n</math> {{harv|Erdélyi|Magnus|Oberhettinger|Tricomi|1953|loc=6.12}}
or
:<math>
==Special cases==
Line 217:
==Application to continued fractions==
By applying a limiting argument to [[Gauss's continued fraction]] it can be shown that<ref>{{cite journal|first1=Evelyn|last1=Frank | year=1956|title=A new class of continued fraction expansions for the ratios of hypergeometric functions| journal=Trans. Am. Math. Soc.|volume=81|number=2|pages=453–476|mr= 0076937|jstor=1992927|doi=10.1090/S0002-9947-1956-0076937-0}}</ref>
:<math>\frac{M(a+1,b+1,z)}{M(a,b,z)} = \cfrac{1}{1 - \cfrac{{\displaystyle\frac{b-a}{b(b+1)}z}}
Line 227:
and that this continued fraction converges uniformly to a [[meromorphic function]] of {{mvar|z}} in every bounded ___domain that does not include a pole.
==See also==
* [[Composite Bézier curve]]
==Notes==
{{Reflist}}
Line 239 ⟶ 241:
* {{cite journal | last= Tricomi | first= Francesco G. | author-link= Francesco Giacomo Tricomi | title= Sulle funzioni ipergeometriche confluenti | language= it | journal= Annali di Matematica Pura ed Applicata |series=Series 4 | year= 1947 | volume= 26 | pages= 141–175 | issn= 0003-4622 | mr= 0029451 | doi=10.1007/bf02415375| s2cid= 119860549 | doi-access= free }}
* {{cite book | last= Tricomi | first= Francesco G. | title= Funzioni ipergeometriche confluenti | language= it | ___location= Rome | publisher= Edizioni cremonese | year= 1954 | series= Consiglio Nazionale Delle Ricerche Monografie Matematiche | volume= 1 | isbn= 978-88-7083-449-9 | mr= 0076936}}
* {{cite book | last1=Oldham | first1=K.B. | last2=Myland | first2=J. | last3=Spanier | first3=J. | title=An Atlas of Functions: with Equator, the Atlas Function Calculator | publisher=Springer New York
==External links==
|