Content deleted Content added
Adding short description: "Invariant cycle theorem" (Shortdesc helper) |
removed Category:Algebraic geometry; added Category:Theorems in algebraic geometry using HotCat |
||
(23 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Invariant cycle theorem}}
In mathematics, the '''local invariant cycle theorem''' was originally a conjecture of Griffiths
:<math>\operatorname{H}^*(X) \to \operatorname{H}^*(p^{-1}(t))^{S^1}</math>
is surjective.
:<math>\operatorname{H}^*(X_s) \to \operatorname{H}^*(X_{\overline{\eta}})^{\operatorname{Gal}(\overline{\eta}/\eta)}</math>
is surjective, where <math>s, \eta</math> are the special and generic points and the homomorphism is the composition <math>\operatorname{H}^*(X_s) \simeq \operatorname{H}^*(X) \to \operatorname{H}^*(X_{\eta}) \to \operatorname{H}^*(X_{\overline{\eta}}).</math>
Line 15:
== References ==
* {{cite journal
| last1 = Beilinson
| first1 = Alexander A.
| authorlink1 = Alexander Beilinson
| authorlink2 = Joseph Bernstein
| first2=Joseph |last2=Bernstein
| authorlink3=Pierre Deligne
| first3=Pierre |last3=Deligne
| year = 1982
| title = Faisceaux pervers
| journal = Astérisque
| volume = 100
| publisher = [[Société Mathématique de France]]
| ___location=Paris
| language = French
| mr = 0751966
}}
*{{cite journal|s2cid=120378293 |doi=10.1215/S0012-7094-77-04410-6 |title=Degeneration of Kähler manifolds |year=1977 |last1=Clemens |first1=C. H. |journal=Duke Mathematical Journal |volume=44 |issue=2 }}
*{{cite journal |url=http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf|title=La conjecture de Weil : II |journal=Publications Mathématiques de l'IHÉS |year=1980 |volume=52 |pages=137–252 |last1=Deligne |first1=Pierre |doi=10.1007/BF02684780 |s2cid=189769469|mr=601520 | zbl= 0456.14014 }}
*{{cite journal |doi=10.1090/S0002-9904-1970-12444-2 |title=Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems |year=1970 |last1=Griffiths |first1=Phillip A. |journal=Bulletin of the American Mathematical Society |volume=76 |issue=2 |pages=228–296 |doi-access=free }}
*Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [http://web.math.ucsb.edu/~drm/papers/clemens-schmid.pdf]
{{algebraic-geometry-stub}}
[[Category:Theorems in algebraic geometry]]
|