Local invariant cycle theorem: Difference between revisions

Content deleted Content added
more specific cat
 
(5 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Invariant cycle theorem}}
In mathematics, the '''local invariant cycle theorem''' was originally a conjecture of Griffiths <ref>{{harvnb|Clemens|1977|loc=Introduction}}</ref><ref>{{harvnb|Griffiths|1970|loc=Conjecture 8.1.}}</ref> which states that, given a surjective [[proper map]] <math>p</math> from a [[Kähler manifold]] <math>X</math> to the unit disk that has maximal rank everywhere except over 0, each cohomology class on <math>p^{-1}(t), t \ne 0</math> is the restriction of some cohomology class on the entire <math>X</math> if the cohomology class is invariant under a circle action (monodromy action); in short,
:<math>\operatorname{H}^*(X) \to \operatorname{H}^*(p^{-1}(t))^{S^1}</math>
is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the [[BBD decomposition]].<ref>{{harvnb|Beilinson|Bernstein|Deligne|1982|loc=Corollaire 6.2.9.}}</ref>
Line 34:
*{{cite journal|s2cid=120378293 |doi=10.1215/S0012-7094-77-04410-6 |title=Degeneration of Kähler manifolds |year=1977 |last1=Clemens |first1=C. H. |journal=Duke Mathematical Journal |volume=44 |issue=2 }}
*{{cite journal |url=http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf|title=La conjecture de Weil : II |journal=Publications Mathématiques de l'IHÉS |year=1980 |volume=52 |pages=137–252 |last1=Deligne |first1=Pierre |doi=10.1007/BF02684780 |s2cid=189769469|mr=601520 | zbl= 0456.14014 }}
*{{cite journal |url=https://doi.org/10.1090/S0002-9904-1970-12444-2|doi=10.1090/S0002-9904-1970-12444-2 |title=Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems |year=1970 |last1=Griffiths |first1=Phillip A. |journal=Bulletin of the American Mathematical Society |volume=76 |issue=2 |pages=228–296 |doi-access=free }}
*Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [http://web.math.ucsb.edu/~drm/papers/clemens-schmid.pdf]
 
 
{{mathalgebraic-geometry-stub}}
{{ci|date=June 2022}}
 
[[Category:AlgebraicTheorems in algebraic geometry]]