Content deleted Content added
m Subst cite isbn using AWB |
m sentence case |
||
(14 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Small angle approximation in geometric optics}}
[[File:Small angle compare error.svg|thumbnail|The error associated with the paraxial approximation. In this plot the cosine is approximated by {{nowrap|1 - θ<sup>2</sup>/2}}.]]
In [[geometric optics]], the '''paraxial approximation''' is a [[small-angle approximation]] used in [[Gaussian optics]] and [[Ray tracing (physics)|ray tracing]] of light through an optical system (such as a [[lens (optics)|lens]]).<ref name="Greivenkamp">{{Cite book | isbn = 0-8194-5294-7 | title = Field Guide to Geometrical Optics | last1 = Greivenkamp | first1 = John E. | year = 2004 | publisher = [[SPIE]] | series = SPIE Field Guides | volume = 1
| last=Weisstein
|
| first=Eric W.
| title=Paraxial Approximation
Line 10 ⟶ 11:
| accessdate=15 January 2014|year=2007}}</ref>
A '''paraxial ray''' is a [[Ray (optics)|ray]]
:<math>
\sin \theta
\tan \theta
▲:<math>\cos \theta \approx 1</math>
The paraxial approximation is used in [[Gaussian optics]] and ''first-order'' ray tracing.<ref name="Greivenkamp" /> [[Ray transfer matrix analysis]] is one method that uses the approximation.
In some cases, the second-order approximation is also called "paraxial". The approximations above for sine and tangent do not change for the "second-order" paraxial approximation (the second term in their [[Taylor series]] expansion is zero), while for cosine the second order approximation is
Line 35 ⟶ 34:
For larger angles it is often necessary to distinguish between [[meridional ray]]s, which lie in a plane containing the [[optical axis]], and [[sagittal ray]]s, which do not.
Use of the small angle approximations replaces dimensionless trigonometric functions with angles in radians. In [[dimensional analysis]] on optics equations radians are dimensionless and therefore can be ignored.
A paraxial approximation is also commonly used in [[physical optics]]. It is used in the derivation of the paraxial wave equation from the homogeneous [[Maxwell's equations]] and, consequently, [[Gaussian beam]] optics.
==References==
{{
== External links ==
|