Paraxial approximation: Difference between revisions

Content deleted Content added
Per WP:HOWTOSD
Tags: Mobile edit Mobile web edit Advanced mobile edit
m sentence case
 
(5 intermediate revisions by 5 users not shown)
Line 11:
| accessdate=15 January 2014|year=2007}}</ref>
 
A '''paraxial ray''' is a [[Ray (optics)|ray]] whichthat makes a small angle (''θ'') to the [[optical axis]] of the system, and lies close to the axis throughout the system.<ref name=Greivenkamp/> Generally, this allows three important approximations (for ''θ'' in [[radian]]s) for calculation of the ray's path, namely:<ref name=Greivenkamp/>
 
:<math>
Line 18:
\quad \text{and}\quad\cos \theta \approx 1.</math>
 
The paraxial approximation is used in [[Gaussian optics]] and ''first-order'' ray tracing.<ref name="Greivenkamp" /> [[Ray transfer matrix analysis]] is one method that uses the approximation.
 
In some cases, the second-order approximation is also called "paraxial". The approximations above for sine and tangent do not change for the "second-order" paraxial approximation (the second term in their [[Taylor series]] expansion is zero), while for cosine the second order approximation is
Line 34:
 
For larger angles it is often necessary to distinguish between [[meridional ray]]s, which lie in a plane containing the [[optical axis]], and [[sagittal ray]]s, which do not.
 
Use of the small angle approximations replaces dimensionless trigonometric functions with angles in radians. In [[dimensional analysis]] on optics equations radians are dimensionless and therefore can be ignored.
 
A paraxial approximation is also commonly used in [[physical optics]]. It is used in the derivation of the paraxial wave equation from the homogeneous [[Maxwell's equations]] and, consequently, [[Gaussian beam]] optics.
 
==References==