Content deleted Content added
m Moving Category:Theorems regarding stochastic processes to Category:Theorems about stochastic processes per Wikipedia:Categories for discussion/Speedy |
|||
(27 intermediate revisions by 24 users not shown) | |||
Line 1:
{{Short description|Mathematical theorem}}
In [[mathematics]], the '''Kolmogorov continuity theorem''' is a [[theorem]] that guarantees that a [[stochastic process]] that satisfies certain constraints on the [[moment (mathematics)|moments]] of its increments will be continuous (or, more precisely, have a "continuous version"). It is credited to the [[Soviet Union|Soviet]] [[mathematician]] [[Andrey Kolmogorov|Andrey Nikolaevich Kolmogorov]].
==Statement
Let <math>
:<math>\mathbb{E}
for all <math>0 \leq s, t \leq T</math>. Then there exists a
* <math>\tilde{X}</math> is [[sample
* for every time <math>t \geq 0</math>, <math>\mathbb{P} (
Furthermore, the paths of <math>\tilde{X}</math> are locally [[Hölder continuity|<math>\gamma</math>-Hölder-continuous]] for every <math>0<\gamma<\tfrac\beta\alpha</math>.
==Example==
In the case of [[Brownian motion]] on <math>\mathbb{R}^
==
* [[Kolmogorov extension theorem]]
==References==
* {{cite book | author= Daniel W. Stroock, S. R. Srinivasa Varadhan | authorlink=Daniel W. Stroock, S. R. Srinivasa Varadhan | title=Multidimensional Diffusion Processes | publisher=Springer, Berlin | year=1997 | isbn=978-3-662-22201-0}} p. 51
[[Category:Stochastic processes]]▼
|