Content deleted Content added
m Typo fixing, typo(s) fixed: Moreover → Moreover, |
m Moving Category:Theorems regarding stochastic processes to Category:Theorems about stochastic processes per Wikipedia:Categories for discussion/Speedy |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Mathematical theorem}}
In [[mathematics]], the '''Kolmogorov continuity theorem''' is a [[theorem]] that guarantees that a [[stochastic process]] that satisfies certain constraints on the [[moment (mathematics)|moments]] of its increments will be continuous (or, more precisely, have a "continuous version"). It is credited to the [[Soviet Union|Soviet]] [[mathematician]] [[Andrey Kolmogorov|Andrey Nikolaevich Kolmogorov]].
==Statement
Let <math>(S,d)</math> be some complete separable metric space, and let <math>X
:<math>\mathbb{E} [d(X_t, X_s)^\alpha] \leq K | t - s |^{1 + \beta}</math>
for all <math>0 \leq s, t \leq T</math>. Then there exists a modification <math>\tilde{X}</math> of <math>X</math> that is a continuous process, i.e. a process <math>\tilde{X}
* <math>\tilde{X}</math> is [[sample-continuous process|sample-continuous]];
Line 19 ⟶ 20:
==See also==
* [[Kolmogorov extension theorem]]
==References==
Line 25 ⟶ 26:
* {{cite book | author= Daniel W. Stroock, S. R. Srinivasa Varadhan | authorlink=Daniel W. Stroock, S. R. Srinivasa Varadhan | title=Multidimensional Diffusion Processes | publisher=Springer, Berlin | year=1997 | isbn=978-3-662-22201-0}} p. 51
[[Category:Theorems
|