Kolmogorov extension theorem: Difference between revisions

Content deleted Content added
 
(3 intermediate revisions by 2 users not shown)
Line 18:
 
In fact, it is always possible to take as the underlying probability space <math>\Omega = (\mathbb{R}^n)^T</math> and to take for <math>X</math> the canonical process <math>X\colon (t,Y) \mapsto Y_t</math>. Therefore, an alternative way of stating Kolmogorov's extension theorem is that, provided that the above consistency conditions hold, there exists a (unique) measure <math>\nu</math> on <math>(\mathbb{R}^n)^T</math> with marginals <math>\nu_{t_{1} \dots t_{k}}</math> for any finite collection of times <math>t_{1} \dots t_{k}</math>. Kolmogorov's extension theorem applies when <math>T</math> is uncountable, but the price to pay
for this level of generality is that the measure <math>\nu</math> is only defined on the product [[Σ-algebra#Product_σ-algebra|product σ-algebra]] of <math>(\mathbb{R}^n)^T</math>, which is not very rich.
 
==Explanation of the conditions==
Line 74:
* Aldrich, J. (2007) [http://www.emis.de/journals/JEHPS/Decembre2007/Aldrich.pdf "But you have to remember P.J.Daniell of Sheffield"] [http://www.emis.de/journals/JEHPS/indexang.html Electronic Journ@l for History of Probability and Statistics] December 2007.
 
[[Category:Theorems regardingabout stochastic processes]]