Content deleted Content added
m Moving Category:Moment (mathematics) to Category:Moments (mathematics) per Wikipedia:Categories for discussion/Speedy |
|||
(18 intermediate revisions by 12 users not shown) | |||
Line 1:
{{More citations needed|date=December 2009}}
In [[probability theory]] and [[statistics]], the '''factorial moment generating function''' (FMGF) of the [[probability distribution]] of a [[real number|real-valued]] [[random variable]] ''X'' is defined as
:<math>M_X(t)=\operatorname{E}\bigl[t^{X}\bigr]
for all [[complex number]]s ''t'' for which this [[expected value]] exists. This is the case at least for all ''t'' on the [[unit circle]] <math>|t|=1</math>, see [[characteristic function (probability theory)|characteristic function]]. If ''X'' is a discrete random variable taking values only in the set {0,1, ...} of non-negative [[integer]]s, then <math>M_X</math> is also called [[probability-generating function]] (PGF) of ''X'' and <math>M_X(t)</math> is well-defined at least for all ''t'' on the [[closed set|closed]] [[unit disk]] <math>|t|\le1</math>.
wherever this expectation exists. The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].▼
▲
Provided <math>M_X</math> exists in a [[neighbourhood (mathematics)|neighbourhood]] of ''t'' = 1, the ''n''th factorial moment is given by <ref>{{Cite web |last=Néri |first=Breno de Andrade Pinheiro |date=2005-05-23 |title=Generating Functions |url=http://homepages.nyu.edu/~bpn207/Teaching/2005/Stat/Generating_Functions.pdf |archive-url=https://web.archive.org/web/20120331042031/https://files.nyu.edu/bpn207/public/Teaching/2005/Stat/Generating_Functions.pdf |archive-date=2012-03-31 |website=nyu.edu}}</ref>
:<math>\operatorname{E}[(X)_n]=M_X^{(n)}(1)=\left.\frac{\mathrm{d}^n}{\mathrm{d}t^n}\right|_{t=1} M_X(t),</math>
where the [[Pochhammer symbol]] (''x'')<sub>''n''</sub> is the [[falling factorial]]
(
==Examples==
▲:<math>(x)_n = x(x-1)(x-2)\cdots(x-n+1).\,</math>
===Poisson distribution===
Suppose ''X'' has a [[Poisson distribution]] with [[expected value]]
▲(Confusingly, some mathematicians, especially in the field of [[special function]]s, use the same notation to represent the [[rising factorial]].)
:<math>M_X(t)
=\sum_{k=0}^\infty t^k\underbrace{\operatorname{P}(X=k)}_{=\,\lambda^ke^{-\lambda}/k!}
▲Suppose ''X'' has a [[Poisson distribution]] with [[expected value]] λ, then its factorial moment generating function is
</math>
(use the [[
▲:<math>M_X(t) = \sum_{k=0}^\infty \frac{(t\lambda)^k e^{-\lambda}}{k!} = e^{-\lambda(1-t)},\qquad t\in\mathbb{R},</math>
▲(use the [[Exponential_function#Formal_definition|definition of the exponential function]]) and thus we have
:<math>\operatorname{E}[(X)_n]=\lambda^n.</math>
Line 29 ⟶ 26:
* [[Cumulant-generating function]]
==References==
[[Category:Probability theory]]▼
{{Reflist}}
{{DEFAULTSORT:Factorial Moment Generating Function}}
[[Category:Factorial and binomial topics]]
[[Category:Moments (mathematics)]]
|