Content deleted Content added
→See also: link PL |
m Moving Category:Moment (mathematics) to Category:Moments (mathematics) per Wikipedia:Categories for discussion/Speedy |
||
(12 intermediate revisions by 8 users not shown) | |||
Line 1:
{{
In [[probability theory]] and [[statistics]], the '''factorial moment generating function''' (FMGF) of the [[probability distribution]] of a [[real number|real-valued]] [[random variable]] ''X'' is defined as
:<math>M_X(t)=\operatorname{E}\bigl[t^{X}\bigr]</math>
for all [[complex number]]s ''t'' for which this [[expected value]] exists. This is the case at least for all ''t'' on the [[unit circle]] <math>|t|=1</math>, see [[characteristic function (probability theory)|characteristic function]]. If ''X'' is a discrete random variable taking values only in the set {0,1, ...} of non-negative [[integer]]s, then <math>M_X</math> is also called [[probability-generating function]] (PGF) of ''X'' and <math>M_X(t)</math> is well-defined at least for all ''t'' on the [[closed set|closed]] [[unit disk]] <math>|t|\le1</math>.
The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].
Provided <math>M_X</math> exists in a [[neighbourhood (mathematics)|neighbourhood]] of ''t'' = 1, the ''n''th factorial moment is given by <ref>{{Cite web |last=Néri |first=Breno de Andrade Pinheiro |date=2005-05-23 |title=Generating Functions |url=http://homepages.nyu.edu/~bpn207/Teaching/2005/Stat/Generating_Functions.pdf |archive-url=https://web.archive.org/web/20120331042031/https://files.nyu.edu/bpn207/public/Teaching/2005/Stat/Generating_Functions.pdf |archive-date=2012-03-31 |website=nyu.edu}}</ref>
:<math>\operatorname{E}[(X)_n]=M_X^{(n)}(1)=\left.\frac{\mathrm{d}^n}{\mathrm{d}t^n}\right|_{t=1} M_X(t),</math>
where the [[Pochhammer symbol]] (''x'')<sub>''n''</sub> is the [[falling factorial]]
:<math>(x)_n = x(x-1)(x-2)\cdots(x-n+1).\,</math>
(
==
===Poisson distribution===
Suppose ''X'' has a [[Poisson distribution]] with [[expected value]] λ, then its factorial moment generating function is
:<math>M_X(t)
Line 17 ⟶ 18:
=e^{-\lambda}\sum_{k=0}^\infty \frac{(t\lambda)^k}{k!} = e^{\lambda(t-1)},\qquad t\in\mathbb{C},
</math>
(use the [[
:<math>\operatorname{E}[(X)_n]=\lambda^n.</math>
Line 24 ⟶ 25:
* [[Moment-generating function]]
* [[Cumulant-generating function]]
==References==
{{Reflist}}
{{DEFAULTSORT:Factorial Moment Generating Function}}
[[Category:Factorial and binomial topics]]
[[Category:
[[Category:Generating functions]]
|