Factorial moment generating function: Difference between revisions

Content deleted Content added
No edit summary
 
(24 intermediate revisions by 16 users not shown)
Line 1:
{{More citations needed|date=December 2009}}
In [[probability theory]] and [[statistics]], the '''factorial moment generating function''' (FMGF) of the [[probability distribution]] of a [[real number|real-valued]] [[random variable]] ''X'' is defined as
:<math>M_X(t)=\operatorname{E}\bigl[t^{X}\bigr]</math>
for all [[complex number]]s ''t'' for which this [[expected value]] exists. This is the case at least for all ''t'' on the [[unit circle]] <math>|t|=1</math>, see [[characteristic function (probability theory)|characteristic function]]. If&nbsp;''X'' is a discrete random variable taking values only in the set {0,1, ...} of non-negative [[integer]]s, then <math>M_X</math> is also called [[probability-generating function]] (PGF) of ''X'' and <math>M_X(t)</math> is well-defined at least for all ''t'' on the [[closed set|closed]] [[unit disk]] <math>|t|\le1</math>.
 
wherever this expectation exists. The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].
:<math>M_X(t)=E\left(t^{X}\right), \quad t \in \mathbb{R},</math>
Provided <math>M_X</math> exists in a [[neighbourhood (mathematics)|neighbourhood]] of ''t''&nbsp;=&nbsp;1, the ''n''th factorial moment is given by <ref>{{Cite web |last=Néri |first=Breno de Andrade Pinheiro |date=2005-05-23 |title=Generating Functions |url=http://homepages.nyu.edu/~bpn207/Teaching/2005/Stat/Generating_Functions.pdf |archive-url=https://web.archive.org/web/20120331042031/https://files.nyu.edu/bpn207/public/Teaching/2005/Stat/Generating_Functions.pdf |archive-date=2012-03-31 |website=nyu.edu}}</ref>
::<math>E\left(operatorname{E}[(X)_n\right)]=M_X^{(n)}(1)=\left.\frac{\mathrm{d}^n}{\mathrm{d}t^n}\right|_{t=1} M_X(t).,</math>
where the [[Pochhammer symbol]] (''x'')<sub>''n''</sub> is the [[falling factorial]]
:<math>E( (Xx)_n )= x(x-1)(x-2)\lambda^cdots(x-n+1).\,</math>
(Many mathematicians, especially in the field of [[special function]]s, use the same notation to represent the [[rising factorial]].)
 
==Examples==
wherever this expectation exists. The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].
===Poisson distribution===
Suppose ''X'' has a [[Poisson distribution]] with [[expected value]] &lambda;λ, then theits factorial moment generating function of ''X'' is
:<math>M_X(t)
=\sum_{k=0}^\infty t^k\underbrace{\operatorname{P}(X=k)}_{=\,\lambda^ke^{-\lambda}/k!}
:<math>M_X(t) = e^{-\lambda}\sum_{xk=0}^\infty \frac{(t\lambda)^x e^{-\lambda}k}{xk!} = e^{-\lambda(1-t-1)},</math>\qquad t\in\mathbb{C},
</math>
(use the [[Exponential function#Formal definition|definition of the exponential function]]) and thus we have
:<math>\operatorname{E}[(X)_n]=\lambda^n.</math>
 
==See also==
Provided the factorial moment generating function exists in an interval around ''t''&nbsp;=&nbsp;1, the ''n''th moment is given by
* [[momentMoment (mathematics)]]
* [[Moment-generating function]]
* [[Cumulant-generating function]]
 
==References==
::<math>E\left((X)_n\right)=M_X^{(n)}(1)=\left.\frac{\mathrm{d}^n}{\mathrm{d}t^n}\right|_{t=1} M_X(t).</math>
{{Reflist}}
 
==Example==
Suppose ''X'' has a [[Poisson distribution]] with [[expected value]] &lambda;, then the factorial moment generating function of ''X'' is
 
:<math>M_X(t) = \sum_{x=0}^\infty \frac{(t\lambda)^x e^{-\lambda}}{x!} = e^{-\lambda(1-t)},</math>
 
and thus we have
 
:<math>E( (X)_n )=\lambda^n.</math>
 
==See also==
* [[Factorial moment]]
* [[moment (mathematics)]]
 
{{DEFAULTSORT:Factorial Moment Generating Function}}
[[Category:Probability distributions]]
[[Category:Factorial and binomial topics]]
[[Category:Moments (mathematics)]]
[[Category:Generating functions]]