Content deleted Content added
provide more scope, even if the sections are mostly empty |
Entranced98 (talk | contribs) Importing Wikidata short description: "Study of matrices and their algebraic properties" |
||
(22 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|Study of matrices and their algebraic properties}}
In [[mathematics]], particularly in [[linear algebra]] and applications, '''matrix analysis''' is the study of [[matrix (mathematics)|matrices]] and their algebraic properties.<ref>{{cite book|title=Matrix Analysis|author=R. A. Horn, C. R. Johnson|year=2012|publisher=Cambridge University Press|isbn=978-052-183-940-
</ref> Some particular topics out of many include; operations defined on matrices (such as [[matrix addition]], [[matrix multiplication]] and operations derived from these), functions of matrices (such as [[matrix exponentiation]] and [[matrix logarithm]], and even [[
</ref>
==Matrix spaces==
The set of all ''m'' × ''n'' matrices over a
:<math>\mathbf{A},\mathbf{B} \in M_{mn}(F)\,,\quad \mathbf{A} + \mathbf{B} \in M_{mn}(F) </math>
Line 16 ⟶ 18:
:<math>\alpha \mathbf{A} + \beta\mathbf{B} \in M_{mn}(F) </math>
where ''α'' and ''β'' are numbers in ''F''.
Any matrix can be expressed as a linear combination of basis matrices, which play the role of the [[basis vector]]s for the matrix space. For example, for the set of 2 × 2 matrices over the field of real numbers, <math>M_{22}(\mathbb{R})</math>, one legitimate basis set of matrices is:
:<math>\begin{pmatrix}1&0\\0&0\end{pmatrix}\,,\quad
\begin{pmatrix}0&1\\0&0\end{pmatrix}\,,\quad
\begin{pmatrix}0&0\\1&0\end{pmatrix}\,,\quad
\begin{pmatrix}0&0\\0&1\end{pmatrix}\,,</math>
because any 2 × 2 matrix can be expressed as:
:<math>\begin{pmatrix}a&b\\c&d\end{pmatrix}=a \begin{pmatrix}1&0\\0&0\end{pmatrix}
+b\begin{pmatrix}0&1\\0&0\end{pmatrix}
+c\begin{pmatrix}0&0\\1&0\end{pmatrix}
+d\begin{pmatrix}0&0\\0&1\end{pmatrix}\,,</math>
where ''a'', ''b'', ''c'',''d'' are all real numbers. This idea applies to other fields and matrices of higher dimensions.
==Determinants==
Line 22 ⟶ 40:
{{main|Determinant}}
The '''determinant''' of a [[square matrix]] is an important property. The determinant indicates if a matrix is [[invertible]] (i.e. the [[inverse matrix|inverse of a matrix]] exists when the determinant is nonzero). Determinants are used for finding eigenvalues of matrices (see below), and for solving a [[system of linear equations]] (see [[Cramer's rule]]).
==Eigenvalues and eigenvectors of matrices==
Line 30 ⟶ 48:
===Definitions===
An ''n'' × ''n'' matrix '''A''' has '''eigenvectors''' '''x''' and '''eigenvalues''' ''λ'' defined by the relation:
:<math>\mathbf{A}\mathbf{x} = \lambda \mathbf{x}</math>
In words, the [[matrix multiplication]] of '''A''' followed by an eigenvector '''x''' (here an ''n''-dimensional [[column matrix]]), is the same as multiplying the eigenvector by the eigenvalue. For an ''n'' × ''n'' matrix, there are ''n'' eigenvalues. The eigenvalues are the
:<math>p_\mathbf{A}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0</math>
where '''I''' is the ''n'' × ''n'' [[identity matrix]].
Roots of polynomials, in this context the eigenvalues, can all be different, or some may be equal (in which case
===Perturbations of eigenvalues===
Line 48 ⟶ 66:
==Matrix similarity==
{{main|Matrix similarity|Change of basis}}
Two ''n'' × ''n'' matrices '''A''' and '''B''' are similar if they are related by a '''similarity transformation''':
:<math>\mathbf{B} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}</math>
The matrix '''P''' is called a '''similarity matrix''', and is necessarily [[matrix inverse|invertible]].
===Unitary similarity===
Line 98 ⟶ 116:
For all matrices '''A''' and '''B''' in ''M''<sub>''mn''</sub>(''F''), and all numbers ''α'' in ''F'', a matrix norm, delimited by double vertical bars || ... ||, fulfills:<ref group="note">Some authors, e.g. Horn and Johnson, use triple vertical bars instead of double: |||'''A'''|||.</ref>
*[[
::<math>\| \mathbf{A} \| \ge 0</math>
:with equality only for '''A''' = '''0''', the [[zero matrix]].
*[[Scalar multiplication]]:
::<math>\|\alpha \mathbf{A}\|=|\alpha| \|\mathbf{A}\|</math>
*The [[triangular inequality]]:
::<math>\|\mathbf{A}+\mathbf{B}\| \leq \|\mathbf{A}\|+\|\mathbf{B}\|</math>
===Frobenius norm===
The '''Frobenius norm''' is analogous to the [[dot product]] of Euclidean vectors;
:<math>\|\mathbf{A}\| = \sqrt{\mathbf{A}:\mathbf{A}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n (A_{ij})^2}</math>
It is defined for matrices of any dimension (i.e. no restriction to square matrices).
==Positive definite and semidefinite matrices
{{main|Positive definite matrix}}
Line 122 ⟶ 140:
{{main|Function (mathematics)}}
Matrix elements are not restricted to constant numbers, they can be [[mathematical variable]]s.
===Functions of matrices
A functions of a matrix takes in a matrix, and return something else (a number, vector, matrix, etc...).
===Matrix-valued functions
A matrix valued function takes in something (a number, vector, matrix, etc...) and returns a matrix.
Line 135 ⟶ 153:
<!---rather than simply deleting, please include these in the article somewhere wherever relevant after the real content is written--->
===Other branches of analysis===
*[[Mathematical analysis]]
Line 140 ⟶ 160:
*[[Matrix calculus]]
*[[Numerical analysis]]
===Other concepts of linear algebra===
*[[Matrix similarity]]▼
*[[Tensor product]]
*[[Spectrum of an operator]]
*[[Matrix geometrical series]]
===Types of matrix===
*[[Orthogonal matrix]], [[unitary matrix]]
*[[Symmetric matrix]], [[antisymmetric matrix]]
*[[Stochastic matrix]]
===Matrix functions===
*[[Matrix exponential]]
==Footnotes==
Line 158 ⟶ 190:
===Further reading===
*{{cite book|title=
*{{cite book|title=Applied Linear Algebra and Matrix Analysis|author=T. S. Shores|year=2007|publisher=Springer|isbn=978-038-733-195-
*{{cite book|title=Matrix Analysis
*{{cite book|title=Computational Matrix Analysis|author=Alan J. Laub|year=2012|publisher=SIAM|isbn=978-161-197-221-
▲*{{cite book|title=Applied Linear Algebra and Matrix Analysis|author=T. S. Shores|year=2007|publisher=Springer|isbn=038-733-195-6|series=Undergraduate Texts in Mathematics|url=http://books.google.co.uk/books?id=8qwTb9P-iW8C&printsec=frontcover&dq=Matrix+Analysis&hl=en&sa=X&ei=SCd1UryWD_LG7Aag_4HwBg&ved=0CGQQ6AEwCA#v=onepage&q=Matrix%20Analysis&f=false}}
▲*{{cite book|title=Computational Matrix Analysis|author=Alan J. Laub|year=2012|publisher=SIAM|isbn=161-197-221-3|url=http://books.google.co.uk/books?id=RJBZBuHpVjEC&printsec=frontcover&dq=Matrix+Analysis&hl=en&sa=X&ei=Iyl1UtCuEIbm7Abc4YHoCg&ved=0CDAQ6AEwADgK#v=onepage&q=Matrix%20Analysis&f=false}}
[[Category:Linear algebra]]
[[Category:Matrices (mathematics)]]
[[Category:Numerical analysis]]
|