Schur-convex function: Difference between revisions

Content deleted Content added
 
(One intermediate revision by one other user not shown)
Line 12:
If <math> g </math> is a convex function defined on a real interval, then <math> \sum_{i=1}^n g(x_i) </math> is Schur-convex.
 
=== Schur-OstrowskiSchur–Ostrowski criterion ===
If ''f'' is symmetric and all first partial derivatives exist, then
''f'' is Schur-convex if and only if
: <math>(x_i - x_j)\left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}\right) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
<math>(x_i - x_j)\left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}\right) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
holds for all <math>1\le i,j\le d</math>.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|date=3 June 1992 |publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
 
Line 31 ⟶ 29:
 
== References ==
{{Reflistreflist}}
 
== See also ==
* [[Quasiconvex function]]
 
[[Category:Convex analysis]]
[[Category:Inequalities (mathematics)]]