Regularization perspectives on support vector machines: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 576/2500
Citation bot (talk | contribs)
Added isbn. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:LinguisticMystic/cs/outline | #UCB_webform_linked 1746/2277
 
(2 intermediate revisions by 2 users not shown)
Line 3:
Specifically, [[Tikhonov regularization]] algorithms produce a decision boundary that minimizes the average training-set error and constrain the [[Decision boundary]] not to be excessively complicated or overfit the training data via a L2 norm of the weights term. The training and test-set errors can be measured without bias and in a fair way using accuracy, precision, Auc-Roc, precision-recall, and other metrics.
 
Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the [[hinge loss]] for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to [[generalize]] without [[overfitting]]. SVM was first proposed in 1995 by [[Corinna Cortes]] and [[Vladimir Vapnik]], and framed geometrically as a method for finding [[hyperplane]]s that can separate [[multidimensional]] data into two categories.<ref>{{cite journal |last=Cortes |first=Corinna |author2=Vladimir Vapnik |title=Support-Vector Networks |journal=Machine Learning |year=1995 |volume=20 |issue=3 |pages=273–297 |doi=10.1007/BF00994018 |doi-access=free }}</ref> This traditional geometric interpretation of SVMs provides useful intuition about how SVMs work, but is difficult to relate to other [[machine-learning]] techniques for avoiding overfitting, like [[regularization (mathematics)|regularization]], [[early stopping]], [[sparsity]] and [[Bayesian inference]]. However, once it was discovered that SVM is also a [[special case]] of Tikhonov regularization, regularization perspectives on SVM provided the theory necessary to fit SVM within a broader class of algorithms.<ref name="rosasco1">{{cite web |last=Rosasco |first=Lorenzo |title=Regularized Least-Squares and Support Vector Machines |url=https://www.mit.edu/~9.520/spring12/slides/class06/class06_RLSSVM.pdf}}</ref><ref>{{cite book |last=Rifkin |first=Ryan |title=Everything Old is New Again: A Fresh Look at Historical Approaches in Machine Learning |year=2002 |publisher=MIT (PhD thesis) |url=http://web.mit.edu/~9.520/www/Papers/thesis-rifkin.pdf}}</ref><ref name="Lee 2012 67–81">{{cite journal |last1=Lee |first1=Yoonkyung |author1-link= Yoonkyung Lee |first2=Grace |last2=Wahba |author2-link=Grace Wahba |title=Multicategory Support Vector Machines |journal=Journal of the American Statistical Association |year=2012 |volume=99 |issue=465 |pages=67–81 |doi=10.1198/016214504000000098 |s2cid=261035640 |citeseerx=10.1.1.22.1879 }}</ref> This has enabled detailed comparisons between SVM and other forms of Tikhonov regularization, and theoretical grounding for why it is beneficial to use SVM's loss function, the hinge loss.<ref name="Rosasco 2004 1063–1076">{{cite journal |author=Rosasco L. |author2=De Vito E. |author3=Caponnetto A. |author4=Piana M. |author5=Verri A. |title=Are Loss Functions All the Same |journal=Neural Computation |date=May 2004 |volume=16 |issue=5 |series=5 |pages=1063–1076 |doi=10.1162/089976604773135104 |pmid=15070510|citeseerx=10.1.1.109.6786 |s2cid=11845688 }}</ref>
 
==Theoretical background==
Line 12:
where <math>\mathcal{H}</math> is a [[hypothesis space]]<ref>A hypothesis space is the set of functions used to model the data in a machine-learning problem. Each function corresponds to a hypothesis about the structure of the data. Typically the functions in a hypothesis space form a [[Hilbert space]] of functions with norm formed from the loss function.</ref> of functions, <math>V \colon \mathbf Y \times \mathbf Y \to \mathbb R</math> is the loss function, <math>\|\cdot\|_\mathcal H</math> is a [[norm (mathematics)|norm]] on the hypothesis space of functions, and <math>\lambda \in \mathbb R</math> is the [[regularization parameter]].<ref>For insight on choosing the parameter, see, e.g., {{cite journal |last=Wahba |first=Grace |author2=Yonghua Wang |title=When is the optimal regularization parameter insensitive to the choice of the loss function |journal=Communications in Statistics – Theory and Methods |year=1990 |volume=19 |issue=5 |pages=1685–1700 |doi=10.1080/03610929008830285 }}</ref>
 
When <math>\mathcal{H}</math> is a [[reproducing kernel Hilbert space]], there exists a [[kernel function]] <math>K \colon \mathbf X \times \mathbf X \to \mathbb R</math> that can be written as an <math>n \times n</math> [[symmetric]] [[Positive-definite kernel|positive-definite]] [[matrix (mathematics)|matrix]] <math>\mathbf K</math>. By the [[representer theorem]],<ref>See {{cite book |last=Scholkopf |first=Bernhard |author2=Ralf Herbrich |author3=Alex Smola |title=Computational Learning Theory |chapter=A Generalized Representer Theorem |journal=Computational Learning Theory: Lecture Notes in Computer Science |year=2001 |volume=2111 |pages=416–426 |doi=10.1007/3-540-44581-1_27 |series=Lecture Notes in Computer Science |isbn=978-3-540-42343-0 |citeseerx=10.1.1.42.8617 }}</ref>conference
| last1 = Schölkopf | first1 = Bernhard
| last2 = Herbrich | first2 = Ralf
| last3 = Smola | first3 = Alexander J.
| editor1-last = Helmbold | editor1-first = David P.
| editor2-last = Williamson | editor2-first = Robert C.
| contribution = A generalized representer theorem
| doi = 10.1007/3-540-44581-1_27
| pages = 416–426
| publisher = Springer
| series = Lecture Notes in Computer Science
| title = Computational Learning Theory, 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16–19, 2001, Proceedings
| volume = 2111
| year = 2001| isbn = 978-3-540-42343-0
}}</ref>
: <math>f(x_i) = \sum_{j=1}^n c_j \mathbf K_{ij}, \text{ and } \|f\|^2_{\mathcal H} = \langle f, f\rangle_\mathcal H = \sum_{i=1}^n \sum_{j=1}^n c_i c_jK(x_i, x_j) = c^T \mathbf K c.</math>