Content deleted Content added
m Moving Category:Theorems in analysis to Category:Theorems in mathematical analysis per Wikipedia:Categories for discussion/Log/2025 April 12#Category:Theorems in analysis |
|||
(14 intermediate revisions by 11 users not shown) | |||
Line 1:
{{short description|Extremes of a linear function over a convex polygonal region occur at the region's corners}}
In [[ ==Statement==
Line 9 ⟶ 10:
==Proof==
Suppose, for the sake of contradiction, that <math>x^\ast \in \mathrm{int}(P)</math>
:<math>x^\ast - \frac{\epsilon}{2} \frac{c}{||c||} \in P</math> and
:<math>c^T\left( x^\ast - \frac{\epsilon}{2} \frac{c}{||c||}\right) = c^T x^\ast - \frac{\epsilon}{2} \frac{c^T c}{||c||} = c^T x^\ast - \frac{\epsilon}{2} ||c|| < c^T x^\ast.</math>
Hence <math>x^\ast</math> is not an optimal solution, a contradiction. Therefore, <math>x^\ast</math> must live on the boundary of <math>P</math>. If <math>x^\ast</math> is not a vertex itself, it must be the convex combination of vertices of <math>P</math>, say <math>x_1, ..., x_t</math>. Then <math>x^\ast = \sum_{i=1}^t \lambda_i x_i</math> with <math>\lambda_i \geq 0</math> and <math>\sum_{i=1}^t \lambda_i = 1</math>. Observe that
:<math>0
==References==▼
▲:<math>0 = c^T\left(\left(\sum_{i=1}^t \lambda_i x_i\right)-x^\ast\right) = c^T\left(\sum_{i=1}^t \lambda_i (x_i - x^\ast)\right) = \sum_{i=1}^t \lambda_i (c^Tx_i - c^Tx^\ast)</math>
* {{cite book |last=Bertsekas |first=Dimitri P. |title=Nonlinear Programming |year=1995 |edition=1st |publisher=Athena Scientific |___location=Belmont, Massachusetts |page=Proposition B.21(c) |isbn=1-886529-14-0}}
* {{cite web |title=The Fundamental Theorem of Linear Programming |url=http://demonstrations.wolfram.com/TheFundamentalTheoremOfLinearProgramming/ |website=WOLFRAM Demonstrations Project |access-date=25 September 2024}}
▲==References==
[[Category:Linear programming]]
[[Category:Theorems in mathematical analysis]]
|