Alternating conditional expectations: Difference between revisions

Content deleted Content added
Added another limitation.
Link suggestions feature: 3 links added.
Tags: Visual edit Mobile edit Mobile web edit Newcomer task Suggested: add links
 
(3 intermediate revisions by 2 users not shown)
Line 1:
 
In [[statistics]], '''Alternating Conditional Expectations (ACE)''' is a [[nonparametric statistics|nonparametric]] [[algorithm]] used in [[regression analysis]] to find the optimal transformations for both the outcome ([[response variable|response]]) variable and the input (predictor) variables.<ref>Breiman, L. and Friedman, J. H. [http://apps.dtic.mil/dtic/tr/fulltext/u2/a123908.pdf Estimating optimal transformations for multiple regression and correlation]. J. Am. Stat. Assoc., 80(391):580–598, September 1985b. {{PD-notice}}</ref>
 
For example, in a model that tries to predict house prices based on size and ___location, ACE helps by figuring out if, for instance, transforming the size (maybe taking the [[square root]] or logarithm) or the ___location (perhaps grouping locations into categories) would make the relationship easier to model and lead to better predictions. The algorithm iteratively adjusts these transformations until it finds the ones that maximize the [[predictive power]] of the regression model.
 
==Introduction==
Line 12:
Let <math>Y,X_1,\dots,X_p</math> be [[Random variable|random variables]]. We use <math>X_1,\dots,X_p</math> to predict <math>Y</math>. Suppose <math>\theta(Y),\varphi_1(X_1),\dots,\varphi_p(X_p)</math> are zero-mean functions and with these [[Transformation (function)|transformation functions]], the fraction of variance of <math>\theta(Y)</math> not explained is
: <math> e^2(\theta,\varphi_1,\dots,\varphi_p)=\frac{\mathbb{E}\left[\theta(Y)-\sum_{i=1}^p \varphi_i(X_i)\right]^2}{\mathbb{E}[\theta^2(Y)]}</math>
Generally, the optimal transformations that minimize the unexplained part are difficult to compute directly. As an alternative, ACE is an [[iterative method]] to calculate the optimal transformations. The procedure of ACE has the following steps:
# Hold <math>\varphi_1(X_1),\dots,\varphi_p(X_p)</math> fixed, minimizing <math>e^2</math><!--
-->gives <math>\theta_1(Y)=\mathbb{E}\left[\sum_{i=1}^p \varphi_i(X_i)\Bigg|Y\right]</math>
Line 47:
 
As a tool for data analysis, the ACE procedure provides graphical output to indicate a need for transformations as well as to guide in their choice. If a particular plot suggests a familiar functional form for a transformation, then the data can be pre-transformed using this functional form and the ACE algorithm can be rerun.
 
Wang suggests that the [[Power transform|Box-Cox transform]], a parametric approach, is a special case of ACE.<ref>Wang, D., Murphy, M. 2005. Identifying Nonlinear Relationships in Regression using the ACE Algorithm. Journal of Applied Statistics. 32(3) 243-258.</ref>
 
== Limitations ==
Line 58 ⟶ 60:
== References ==
{{reflist}}
* [[File:PD-icon.svg|15px|link=|alt=]] ''This draft contains quotations from [httpshttp://web.archive.org/web/20200327175936/http://apps.dtic.mil/stidtic/tr/pdffulltext/u2/ADA119802a123908.pdf Estimating Optimal Transformations For Multiple Regression And Correlation By Leo Breiman And Jerome Freidman. Technical Report No. 9 July 1982], which is in the public ___domain.''
 
[[Category:Nonparametric regression]]