Content deleted Content added
Aramidetkd (talk | contribs) m Changed a capitalized letter in between a sentence Tags: Visual edit Mobile edit Mobile web edit Newcomer task Newcomer task: copyedit |
incorrect extra period removed |
||
(14 intermediate revisions by 14 users not shown) | |||
Line 1:
{{short description|Solution to the spacecraft attitude determination problem
▲Triad is one of the earliest and simplest solutions to the spacecraft attitude determination problem,<ref>{{cite journal|last=Black|first=Harold|title=A Passive System for Determining the Attitude of a Satellite|journal=AIAA Journal|date=July 1964|volume=2|issue=7|pages=1350–1351|doi=10.2514/3.2555|bibcode = 1964AIAAJ...2.1350. }}</ref><ref>{{cite journal|last=Black|first=Harold|title=Early Developments of Transit, the Navy Navigation Satellite System|journal=Journal of Guidance, Control and Dynamics|date=July–August 1990|volume=13|issue=4|pages=577–585|doi=10.2514/3.25373|bibcode = 1990JGCD...13..577B }}</ref> due to Harold Black. Black played a key role in the development of the guidance, navigation, and control of the U.S. Navy's Transit satellite system at Johns Hopkins Applied Physics Laboratories. As evident from the literature, TRIAD represents the state of practice in spacecraft attitude determination, well before the advent of the [[Wahba's problem]]<ref>{{cite journal|last=Wahba|first=Grace|title=A Least Squares Estimate of Satellite Attitude, Problem 65.1|journal=SIAM Review|date=July 1966|pages=385–386|doi=10.1137/1008080|volume=8}}</ref> and its several optimal solutions. Given the knowledge of two vectors in the reference and body coordinates of a satellite, the TRIAD algorithm obtains the direction cosine matrix relating to both frames. Covariance analysis for Black's classical solution was subsequently provided by Markley.<ref>{{cite journal|last=Markley|first=Landis|title=Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm|journal=The Journal of Astronautical Sciences|date=April–June 1993|volume=41|issue=2|pages=261–280|url=http://www.malcolmdshuster.com/FC_Markley_1993_J_FOAM_JAS_MDSscan.pdf|accessdate=April 18, 2012}}</ref>
==Summary==
{{NumBlk|:|
Line 20 ⟶ 19:
|{{EquationRef|2}}}}
{{NumBlk|:|
Line 30 ⟶ 29:
where <math> \vdots </math> have been used to separate different column vectors.
The solution presented above works well in the noise-free case. However, in practice, <math> \vec{r}_1, \vec{r}_2 </math> are noisy and the orthogonality condition of the attitude matrix (or the direction cosine matrix) is not preserved by the above procedure.
{{NumBlk|:|
Line 56 ⟶ 55:
|{{EquationRef|7}}}}
to be used in place of the first two columns of equation ({{EquationNote|3}}). Their cross product is used as the third column in the linear system of equations obtaining a proper orthogonal matrix for the spacecraft attitude given by the following:
{{NumBlk|:|
Line 64 ⟶ 63:
|{{EquationRef|8}}}}
While the normalizations of
{{NumBlk|:|
<math>
\hat{A} = \left[ \hat{S} ~ \vdots ~ \hat{M} ~\vdots~ \hat{S} \times \hat{M} \right] . \left[ \hat{s} ~\vdots~ \hat{m} ~\vdots~ \hat{s} \times \hat{m} \right]^T
</math>
|{{EquationRef|9}}}}
Note that computational efficiency has been achieved in this procedure by replacing the matrix inverse with a transpose. This is possible because the matrices involved in computing attitude are each composed of a
==
It is of consequence to note that the
{{NumBlk|:|
Line 89 ⟶ 87:
\Delta = \left[ \hat{s} ~\vdots~ \hat{m} ~\vdots~ \hat{s} \times \hat{m} \right].
</math>
Note that if the columns of <math> \Gamma </math> form a left
{{NumBlk|:|
<math>
Line 98 ⟶ 96:
==Applications==
==See also==
|