Single particle analysis: Difference between revisions

Content deleted Content added
ce
No edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Method of analyzing transmission electron microscopy imagery}}
[[File:SingleParticleAnalysis.png|thumb|right|Single particle analysis segments and averages many particles from a sample, allowing for computer algorithms to process the individual images into a combined "representative" image. This allows for improvements in signal to noise, and can be combined with [[deconvolution]] to provide limited improvements to spatial resolution in the image.]]
'''Single particle analysis''' is a group of related computerized image processing techniques used to analyze images from [[Transmission electron microscope|transmission electron microscopy]] (TEM).<ref name="Frank">{{Cite book|first=Joachim |last=Frank |title=Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state |publisher=Oxford University Press |___location=Oxford |year=2006 |isbn=978-0-19-518218-7 |url=https://books.google.com/books?id=vWaSRUjicbgC}}{{Page needed|date=August 2010}}</ref> These methods were developed to improve and extend the information obtainable from TEM images of particulate samples, typically [[proteins]] or other large biological entities such as [[virus]]es. Individual images of stained or unstained particles are very [[Signal noise|noisy]], andmaking sointerpretation hard to interpretdifficult. Combining several digitized images of similar particles together gives an image with stronger and more easily interpretable features. An extension of this technique uses single particle methods to build up a [[Transmission electron microscopy#Three-dimensional imaging|three-dimensional reconstruction]] of the particle. Using [[cryogenic transmission electron microscopy|cryo-electron microscopy]] it has become possible to generate reconstructions with sub-[[Nanometre|nanometer]] [[Resolution (electron density)|resolution]] and near-atomic resolution<ref name="Zhou">{{Cite journal|author=Zhou ZH |title=Towards atomic resolution structural determination by single-particle cryo-electron microscopy |journal=Current Opinion in Structural Biology |volume=18 |issue=2 |pages=218–28 |date=April 2008 |pmid=18403197 |pmc=2714865 |doi=10.1016/j.sbi.2008.03.004}}</ref><ref name="Dynamics">{{Cite journal|vauthors=Wang Q, Matsui T, Domitrovic T, Zheng Y, Doerschuk PC, Johnson JE |title=Dynamics in cryo EM reconstructions visualized with maximum-likelihood derived variance maps |journal=Journal of Structural Biology|volume=181|issue=3 |pages=195–206 |date=March 2013 |doi=10.1016/j.jsb.2012.11.005|pmid=23246781 |pmc=3870017}}</ref> first in the case of highly symmetric viruses, and now in smaller, asymmetric proteins as well.<ref name="Bartesaghi">{{Cite journal| doi = 10.1126/science.aab1576| issn = 1095-9203| volume = 348| issue = 6239| pages = 1147–1151| last1 = Bartesaghi| first1 = Alberto| last2 = Merk| first2 = Alan| last3 = Banerjee| first3 = Soojay| last4 = Matthies| first4 = Doreen| last5 = Wu| first5 = Xiongwu| last6 = Milne| first6 = Jacqueline L. S.| last7 = Subramaniam| first7 = Sriram| title = 2.2 Å resolution CryoTEM structure of β-galactosidase in complex with a cell-permeant inhibitor| journal = Science| date = 2015-06-05| pmid = 25953817| pmc = 6512338| bibcode = 2015Sci...348.1147B}}</ref> Single particle analysis can also be performed by [[inductively coupled plasma mass spectrometry]] (ICP-MS).
 
==Techniques==
Line 44:
Various software [[Software tools for molecular microscopy|programs]] are available that allow viewing the 3D maps. These often enable the user to manually dock in protein coordinates (structures from [[X-ray crystallography]] or NMR) of subunits into the electron density. Several programs can also fit subunits computationally.<ref>{{cite web |title=Cryo-EM structure solution with Phenix |url=https://phenix-online.org/documentation/overviews/cryo-em_index.html |website=phenix-online.org}}</ref><ref>{{cite journal |last1=Nicholls |first1=RA |last2=Tykac |first2=M |last3=Kovalevskiy |first3=O |last4=Murshudov |first4=GN |title=Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. |journal=Acta Crystallographica Section D |date=1 June 2018 |volume=74 |issue=Pt 6 |pages=492–505 |doi=10.1107/S2059798318007313 |pmid=29872001|pmc=6096485 |bibcode=2018AcCrD..74..492N |doi-access=free }}</ref>
 
For higher-resolution structures, it is possible to build the macromolecule directly, without prior structural knowledge from other methods. Computer algorithms have also been developed for this task.<ref>{{citationcite journal |doi=10.1038/s41586-024-07215-4 |biorxiv=10.1101/2023.05.16.541002 |title=Automated model building and protein identification in cryo-EM maps |date=2024 |last1=Jamali |first1=Kiarash |last2=Käll |first2=Lukas |last3=Zhang |first3=Rui |last4=Brown |first4=Alan |last5=Kimanius |first5=Dari |last6=Scheres |first6=Sjors H. W. |titlejournal=Automated model building and protein identification in cryo-EM mapsNature |journalvolume=BioRxiv: The Preprint Server for Biology628 |dateissue=16 May 20238007 |pages=2023.05.16.541002450–457 |doi=10.1101/2023.05.16.541002|pmid=3729268138408488 |pmc=10245678 |bibcode=2024Natur.628..450J }}</ref>
 
As high-resolution cryo-EM models are relative new, quality control tools are not as plentiful as it is for X-ray models. Nevertheless, cryo-EM ("real space") versions of the [[difference density map]],<ref>{{cite journal |last1=Yamashita |first1=Keitaro |last2=Palmer |first2=Colin M. |last3=Burnley |first3=Tom |last4=Murshudov |first4=Garib N. |title=Cryo-EM single-particle structure refinement and map calculation using Servalcat |journal=Acta Crystallographica Section D Structural Biology |date=1 October 2021 |volume=77 |issue=10 |pages=1282–1291 |doi=10.1107/S2059798321009475 |pmid=34605431 |pmc=8489229 |bibcode=2021AcCrD..77.1282Y |doi-access=free |quote=}}</ref> cross-validation using a "free" map (comparable to the use of a free [[R-factor]]),<ref>{{cite journal |last1=Falkner |first1=B |last2=Schröder |first2=GF |title=Cross-validation in cryo-EM-based structural modeling. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=28 May 2013 |volume=110 |issue=22 |pages=8930–5 |doi=10.1073/pnas.1119041110 |pmid=23674685|pmc=3670386 |bibcode=2013PNAS..110.8930F |doi-access=free }}</ref><ref>{{cite journal |last1=Beckers |first1=Maximilian |last2=Mann |first2=Daniel |last3=Sachse |first3=Carsten |title=Structural interpretation of cryo-EM image reconstructions |journal=Progress in Biophysics and Molecular Biology |date=March 2021 |volume=160 |pages=26–36 |doi=10.1016/j.pbiomolbio.2020.07.004 |pmid=32735944 |doi-access=free}}</ref> and various [[structure validation]] tools have begun to appear.
 
===Single particle ICP-MS===
 
Single particle-induced coupled plasma-mass spectroscopy (SP-ICP-MS) is used in several areas where there is the possibility of detecting and quantifying suspended particles in samples of environmental fluids, assessing their migration, assessing the size of particles and their distribution, and also determining their stability in a given environment. SP-ICP-MS was designed for particle suspensions in 2000 by Claude Degueldre. He first tested this new methodology at the Forel Institute of the University of Geneva and presented this new analytical approach at the 'Colloid 2oo2' symposium during the spring 2002 meeting of the EMRS, and in the proceedings in 2003.<ref>C.{{cite Degueldrejournal &| Pdoi=10. 1016/S0927-Y. Favarger,7757(02)00568-X «| title=Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: aA feasibility study »,| Colloidsdate=2003 and| Surfaceslast1=Degueldre A:| Physicochemicalfirst1=C. and| Engineeringlast2=Favarger Aspects,| symposiumfirst2=P.-Y. C| ofjournal=Colloids theand E-MRSSurfaces 2002A: SpringPhysicochemical Meetingand inEngineering Strasbourg,Aspects France, vol.| volume=217, no| 1,issue=1–3 28 avril 2003, p.| pages=137–142 (ISSN 0927-7757, DOI 10.1016/S0927-7757(02)00568-X)}}</ref> This study presents the theory of SP ICP-MS and the results of tests carried out on clay particles (montmorillonite) as well as other suspensions of colloids. This method was then tested on thorium dioxide nanoparticles by Degueldre & Favarger (2004),<ref>C{{cite Degueldrejournal et| Pdoi=10.1016/j.talanta.2003.10.016 -Y Favarger, «| title=Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry »,| Talanta,date=2004 vol| last1=Degueldre | first1=C. 62,| nojournal=Talanta 5,| 19volume=62 avril| 2004,issue=5 p.| pages=1051–1054 (ISSN| 0039-9140,pmid=18969397 DOI 10.1016/j.talanta.2003.10.016}}</ref> zirconium dioxide by Degueldre et al (2004)<ref>C.{{cite Degueldre,journal P.| -Ydoi=10. Favarger et C1016/j.aca.2004.04.015 Bitea, «| title=Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry »,| Analyticadate=2004 Chimica| Acta,last1=Degueldre vol| first1=C. 518,| nolast2=Favarger 1,| 2first2=P.-Y. août| 2004,last3=Bitea p| first3=C. 137–142| (ISSNjournal=Analytica 0003-2670,Chimica DOIActa 10| volume=518 | issue=1–2 | pages=137–142 | bibcode=2004AcAC.1016/j.aca518.2004.04.015)137D }}</ref> and gold nanoparticles, which are used as a substrate in nanopharmacy, and published by Degueldre et al (2006).<ref>C.{{cite Degueldre,journal P.| -Ydoi=10. Favarger et S1016/j.aca.2005.09.021 Wold, «| title=Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode »,| Analyticadate=2006 Chimica| Acta,last1=Degueldre vol| first1=C. 555,| nolast2=Favarger 2,| 12first2=P.-Y. janvier| 2006,last3=Wold p| first3=S. 263–268| (ISSNjournal=Analytica 0003-2670,Chimica Acta | volume=555 | issue=2 DOI| 10pages=263–268 | bibcode=2006AcAC.1016/j.aca555.2005.09.021)263D }}</ref> Subsequently, the study of uranium dioxide nano- and micro-particles gave rise to a detailed publication, Ref. Degueldre et al (2006).<ref>C.{{cite Degueldre,journal P.| -Ydoi=10. Favarger, R1016/j. Rossé et Stalanta.2005.05.006 Wold, «| title=Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry »,| Talanta,date=2006 vol| last1=Degueldre | first1=C. 68,| nolast2=Favarger 3,| 15first2=P.-Y. janvier| 2006,last3=Rossé p| first3=R. | last4=Wold | first4=S. | journal=Talanta | volume=68 | issue=3 | pages=623–628 (ISSN| 0039-9140,pmid=18970366 DOI 10.1016/j.talanta.2005.05.006}}</ref> Since 2010 the interest for SP ICP-MS has exploded.
 
==Examples==
Line 59:
 
==Primary database==
* [http://www.emdatabank.org/index.html EM Data Bank] {{Webarchive|url=https://web.archive.org/web/20190205053534/http://www.emdatabank.org/index.html |date=2019-02-05 }} ([[EM Data Bank]])
 
==References==